232 research outputs found

    The VIRMOS-VLT Deep Survey

    Get PDF
    The aim of the VIRMOS VLT Deep Survey (VVDS) is to study of the evolution of galaxies, large scale structures and AGNs from a sample of more than 150,000 galaxies with measured redshifts in the range 0<z<5+. The VVDS will rely on the VIMOS and NIRMOS wide field multi-object spectrographs, which the VIRMOS consortium is delivering to ESO. Together, they offer unprecedented multiplex capability in the wavelength range 0.37-1.8microns, allowing for large surveys to be carried out. The VVDS has several main aspects: (1) a deep multi-color imaging survey over 18deg^2 of more than one million galaxies, (2) a "wide" spectroscopic survey with more than 130,000 redshifts measured for objects brighter than IAB=22.5 over 18deg^2, (3) a "deep" survey with 50,000 redshifts measured to IAB=24, (4) ultra-deep" surveys with several thousand redshifts measured to IAB=25, (5) multi-wavelength observations with the VLA and XMM.Comment: 5 pages including figures; to appear in Proc. of the ESO/ECF/STSCI "Deep Fields" workshop, Garching Oct 2000, (Publ: Springer

    The VIMOS-VLT Deep Survey - The evolution of galaxy clustering per spectral type to z~1.5

    Full text link
    We measure the evolution of clustering for galaxies with different spectral types from 6495 galaxies with 17.5<=I_AB<=24 and measured spectroscopic redshift in the first epoch VIMOS-VLT Deep Survey. We classify our sample into 4 classes, based on the fit of well-defined galaxy spectral energy distributions on observed multi-color data. We measure the projected function wp(rp) and estimate the best-fit parameters for a power-law real-space correlation function. We find the clustering of early-spectral-type galaxies to be markedly stronger than that of late-type galaxies at all redshifts up to z<=1.2. At z~0.8, early-type galaxies display a correlation length r_0=4.8+/-0.9h^{-1}Mpc, while late types have r_0=2.5+/-0.4h^{-1}Mpc. The clustering of these objects increases up to r_0=3.42+/-0.7h^{-1}Mpc for z~1.4. The relative bias between early- and late-type galaxies within our magnitude-limited survey remains approximately constant with b~1.7-1.8 from z~=0.2 up to z~=1, with indications for a decrease at z>1.2, due to the growth in clustering of the star-forming population. We find similar results when splitting the sample into `red' and `blue' galaxies using the observed color bi-modality. When compared to the expected linear growth of mass fluctuations, a natural interpretation of these observations is that: (a) the assembly of massive early type galaxies is already mostly complete in the densest dark matter halos at z~=1; (b) luminous late-type galaxies are located in higher-density, more clustered regions of the Universe at z~=1.5 than at present, indicating that star formation activity is progressively increasing, going back in time, in the higher-density peaks that today are mostly dominated by old galaxies.Comment: 12 pages, Accepted on 11-Feb-06 for publication in Astronomy and Astrophysic

    NIR Follow-Up of the VVDS 02hr Field

    Get PDF
    We present a new K-band survey covering 623 arcmin2^2 in the VVDS 0226-0430 deep field down to a limiting magnitude KVega_{\rm{Vega}} ≀\leq 20.5. We use the spectroscopic sample extracted from this new K-band catalogue to assess the effectiveness of optical-near infrared color selections in identifying extreme classes of objects at high redshift.Comment: 6 pages, 4 figures. To appear in the Proceedings of the IAU Symposium No. 235, 2006, "Galaxy Evolution across the Hubble Time", F. Combes & J. Palous, ed

    The VIRMOS-VLT Deep Survey: the last 10 billion years of evolution of galaxy clustering

    Get PDF
    We discuss the evolution of clustering of galaxies in the Universe from the present epoch back to z ~ 2, using the first-epoch data from the VIMOS-VLT Deep Survey (VVDS). We present the evolution of the projected two-point correlation function of galaxies for the global galaxy population, as well as its dependence on galaxy intrinsic luminosities and spectral types. While we do not find strong variations of the correlation function parameters with redshift for the global galaxy population, the clustering of objects with different intrinsic luminosities evolved significantly during last 8-10 billion years. Our findings indicate that bright galaxies in the past traced higher density peaks than they do now and that the shape of the correlation function of most luminous galaxies is different from observed for their local counterparts, which is a supporting evidence of a non-trivial evolution of the galaxy vs. dark matter bias.Comment: 4 pages, 4 figures, to appear in the proceedings of the conference 'At the Edge of the Universe' (9-13 October 2006, Sintra, Portugal

    Testing gravity on large scales. The skewness of the galaxy distribution at z~1

    Full text link
    We study the evolution of the low-order moments of the galaxy overdensity distribution over the redshift interval 0.7<z<1.5. We find that the variance and the normalized skewness evolve over this redshift interval in a way that is remarkably consistent with predictions of first- and second-order perturbation theory. This finding confirms the standard gravitational instability paradigm over nearly 9 Gyrs of cosmic time and demonstrates the importance of accounting for the non-linear component of galaxy biasing to avoid disagreement between theory and observations.Comment: To appear in the proceedings of 43rd Rencontres de Moriond on Cosmology (La Thuile, 2008

    The VIMOS VLT Deep Survey :Evolution of the major merger rate since z~1 from spectroscopicaly confirmed galaxy pairs

    Full text link
    From the VIMOS VLT Deep Survey we use a sample of 6447 galaxies with I_{AB} < 24 to identify 251 pairs of galaxies, each member with a secure spectroscopic redshift, which are close in both projected separation and in velocity. We find that at z ~ 0.9, 10.9 +/- 3.2 % of galaxies with M_B(z) < -18-Qz are in pairs with separations dr < 20 kpc/h, dv < 500 km/s, and with dM_B < 1.5, significantly larger than 3.76 +/- 1.71 % at z ~ 0.5; we find that the pair fraction evolves as (1+z)^m with m = 2.49 +/- 0.56. For brighter galaxies with M_B(z=0) < -18.77, the pair fraction is higher and its evolution with redshift is somewhat flatter with m=1.88 \pm 0.40, a property also observed for galaxies with increasing stellar masses. Early type, dry mergers, pairs increase their relative fraction from 3 % at z ~ 0.9 to 12 % at z ~ 0.5. We find that the merger rate evolves as N_{mg}=(9.05 +/- 3.76) * 10^{-4}) * (1+z)^{2.43 +/- 0.76}. We find that the merger rate of galaxies with M_B(z) < -18-Qz has significantly evolved since z ~ 1. The merger rate is increasing more rapidly with redshift for galaxies with decreasing luminosities, indicating that the flat evolution found for bright samples is not universal. The merger rate is also strongly dependent on the spectral type of galaxies involved, late type mergers being more frequent in the past, while early type mergers are more frequent today, contributing to the rise in the local density of early type galaxies. About 20 % of the stellar mass in present day galaxies with log(M/M_{sun}) > 9.5 has been accreted through major merging events since z ~ 1, indicating that major mergers have contributed significantly to the growth in stellar mass density of bright galaxies over the last half of the life of the Universe.Comment: 22 pages, 19 figures, accepted in A&

    The VIMOS VLT Deep Survey final data release: a spectroscopic sample of 35016 galaxies and AGN out to z~6.7 selected with 17.5<=i_{AB}<=24.7

    Full text link
    We describe the completed VIMOS VLT Deep Survey, and the final data release of 35016 galaxies and type-I AGN with measured spectroscopic redshifts up to redshift z~6.7, in areas 0.142 to 8.7 square degrees, and volumes from 0.5x10^6 to 2x10^7h^-3Mpc^3. We have selected samples of galaxies based solely on their i-band magnitude reaching i_{AB}=24.75. Spectra have been obtained with VIMOS on the ESO-VLT, integrating 0.75h, 4.5h and 18h for the Wide, Deep, and Ultra-Deep nested surveys. A total of 1263 galaxies have been re-observed independently within the VVDS, and from the VIPERS and MASSIV surveys. They are used to establish the redshift measurements reliability, to assess completeness, and to provide a weighting scheme taking into account the survey selection function. We describe the main properties of the VVDS samples, and the VVDS is compared to other spectroscopic surveys. In total we have obtained spectroscopic redshifts for 34594 galaxies, 422 type-I AGN, and 12430 Galactic stars. The survey has enabled to identify galaxies up to very high redshifts with 4669 redshifts in 1<=z_{spec}<=2, 561 in 2<=z_{spec}<=3 and 468 with z_{spec}>3, and specific populations like LAE have been identified out to z=6.62. We show that the VVDS occupies a unique place in the parameter space defined by area, depth, redshift coverage, and number of spectra. The VVDS provides a comprehensive survey of the distant universe, covering all epochs since z, or more than 12 Gyr of cosmic time, with a uniform selection, the largest such sample to date. A wealth of science results derived from the VVDS have shed new light on the evolution of galaxies and AGN, and their distribution in space, over this large cosmic time. A final public release of the complete VVDS spectroscopic redshift sample is available at http://cesam.lam.fr/vvds.Comment: Submitted 30 June 2013, Accepted 22 August 2013. Updated with published versio

    Accurate photometric redshifts for the CFHT Legacy Survey calibrated using the VIMOS VLT Deep Survey

    Get PDF
    We present photometric redshifts for an uniquely large and deep sample of 522286 objects with i'_{AB}<25 in the Canada-France Legacy Survey ``Deep Survey'' fields, which cover a total effective area of 3.2 deg^2. We use 3241 spectroscopic redshifts with 0<z<5 from the VIMOS VLT Deep Survey as a calibration to derive these photometric redshifts. We devise a robust calibration method which removes systematic trends in the photometric redshifts and significantly reduces the fraction of catastrophic errors. We use our unique spectroscopic sample to present a detailed assessment of the robustness of the photometric redshift sample. For a sample selected at i'_{AB}<24, we reach a redshift accuracy of \sigma_{\Delta z/(1+z)}=0.037 with \eta=3.7% of catastrophic error. The reliability of our photometric redshifts is lower for fainter objects: we find \sigma_{\Delta z/(1+z)}=0.029, 0.043 and \eta=1.7%, 5.4% for samples selected at i'_{AB}=17.5-22.5 and 22.5-24 respectively. We find that the photometric redshifts of starburst galaxies in our sample are less reliable: although these galaxies represent only 18% of the spectroscopic sample they are responsible for 54% of the catastrophic errors. We find an excellent agreement between the photometric and the VVDS spectroscopic redshift distributions at i'_{AB}<24. Finally, we compare the redshift distributions of i' selected galaxies on the four CFHTLS deep fields, showing that cosmic variance is already present on fields of 0.8 deg^2.Comment: 19 pages, 17 figures, submitted to A&A. The photometric redshifts described in this paper will be made publicly available from 1st may 2006 at http://terapix.iap.fr and http://cencosw.oamp.fr

    The VIMOS VLT Deep Survey: the faint type-1 AGN sample

    Get PDF
    We present the type-1 active galactic nuclei (AGN) sample extracted from the VIMOS VLT Deep Survey first observations of 21000 spectra in 1.75 square degree. This sample, which is purely magnitude limited, free of morphological or color selection biases, contains 130 broad line AGN (BLAGN) spectra with redshift up to 5. Our data are divided into a wide (Iab < 22.5) and a deep (Iab < 24) subsample containing 56 and 74 objects respectively. Because of its depth and selection criteria, this sample is uniquely suited to study the population of faint type-1 AGN. Our measured surface density (~ 472 +- 48 BLAGN per square degree with Iab < 24) is significantly higher than that of any other optically selected sample of BLAGN with spectroscopic confirmation. By applying a morphological and color analysis to our AGN sample we find that: (1)~23% of the AGN brighter than Iab=22.5 are classified as extended; this percentage increases to ~42% for those with z < 1.6; (2) a non-negligible fraction of our BLAGN are lying close to the color space area occupied by stars in u*-g' versus g'-r' color-color diagram. This leads us to the conclusion that classical optical ultraviolet preselection technique, if employed at such deep magnitudes (Iab=22.5) in conjuction with a preselection of point-like sources, can miss miss up to ~35% of the AGN population. Finally, we present a composite spectrum of our sample of objects. While the continuum shape is very similar to that of the SDSS composite at short wavelengths, it is much redder than it at lambda > 3000 A. We interpret this as due to significant contamination from emission of the host galaxies, as expected from the faint absolute magnitudes sampled by our survey.Comment: Accepted to A&A, 18 pages, 14 figure
    • 

    corecore