82 research outputs found

    Interleukin-1 plays a major role in vascular inflammation and atherosclerosis in male apolipoprotein E-knockout mice

    Get PDF
    Objective: To examine the role of the balance between interleukin (IL)-1 and IL-1 receptor antagonist (IL-1Ra) in atherosclerosis and vascular inflammation. Methods: Transgenic (Tg) mice overexpressing either secreted IL-1Ra or intracellular IL-1Ra1 as well as IL-1Ra-deficient mice (IL-1Ra −/−) were crossed with apolipoprotein E-deficient mice (ApoE −/−). Results: In males fed a cholesterol-rich diet for 10 weeks, average atherosclerotic lesion area within aortic roots was significantly decreased in ApoE −/− secreted IL-1Ra Tg (−47%) and ApoE −/− intracellular IL-1Ra1 Tg (−40%) mice as compared to ApoE −/− non-Tg controls. The extent of sudanophilic lesions was reduced within the thoraco-abdominal aorta in ApoE −/− secreted IL-1Ra (−53%) and ApoE −/− intracellular IL-1Ra1 (−67%) Tg mice. In parallel experiments, we observed early mortality and illness among double deficient mice, whereas ApoE −/− IL-1Ra +/+ and ApoE +/+ IL-1Ra −/− mice were apparently healthy. After 7 weeks of diet, ApoE −/− IL-1Ra −/− mice exhibited massive aortic inflammation with destruction of the vascular architecture, but no signs of atherosclerosis. ApoE −/− IL-1Ra +/+ had atherosclerosis and a moderate inflammatory reaction, whereas ApoE +/+ IL-1Ra −/− mice were free of vascular lesions. Macrophages were present in large amounts within inflammatory lesions in the adventitia of ApoE −/− IL-1Ra −/− mice. Conclusion: Our results demonstrate that the IL-1/IL-1Ra ratio plays a critical role in the pathogenic mechanisms leading to vascular inflammation and atherosclerosis in ApoE −/− mic

    The Dynamics and Mechanisms of Interleukin-1α and β Nuclear Import

    Get PDF
    Pro-inflammatory members of the interleukin-1 (IL-1) family of cytokines (IL-1α and β) are important mediators of host defense responses to infection but can also exacerbate the damaging inflammation that contributes to major human diseases. IL-1α and β are produced by cells of the innate immune system, such as macrophages, and act largely after their secretion by binding to the type I IL-1 receptor on responsive cells. There is evidence that IL-1α is also a nuclear protein that can act intracellularly. In this study, we report that both IL-1α and IL-1β produced by microglia (central nervous system macrophages) in response to an inflammatory challenge are distributed between the cytosol and the nucleus. Using IL-1-β-galactosidase and IL-1-green fluorescent protein chimeras (analyzed by fluorescence recovery after photobleaching), we demonstrate that nuclear import of IL-1α is exclusively active, requiring a nuclear localization sequence and Ran, while IL-1β nuclear import is entirely passive. These data provide valuable insights into the dynamic regulation of intracellular cytokine trafficking

    Cytokines and atherosclerosis: a comprehensive review of studies in mice

    Get PDF
    In the past few years, inflammation has emerged as a major driving force of atherosclerotic lesion development. It is now well-established that from early lesion to vulnerable plaque formation, numerous cellular and molecular inflammatory components participate in the disease process. The most prominent cells that invade in evolving lesions are monocyte-derived macrophages and T-lymphocytes. Both cell types produce a wide array of soluble inflammatory mediators (cytokines, chemokines) which are critically important in the initiation and perpetuation of the disease. This review summarizes the currently available information from mouse studies on the contribution of a specified group of cytokines expressed in atherosclerotic lesions, viz. interleukins (IL-1, IL-2, IL-3, IL-4, IL-5, IL-6, IL-10, IL-12, IL-18, IL-20) and macrophage-associated cytokines [tumour necrosis factor-α (TNF-α); macrophage migration inhibitory factor (MIF); interferon-γ (IFN-γ); colony stimulating factors G-CSF,-M-CSF,-GM-CSF) to atherogenesis. Emphasis is put on the consistency of the effects of these cytokines, i.e. inasmuch an effect depends on the experimental approach applied (overexpression/deletion, strain, gender, dietary conditions, and disease stage). An important outcome of this survey is (i) that only for a few cytokines there is sufficient consistent data allowing classifying them as typically proatherogenic (IL-1, IL-12, IL-18, MIF, IFN-γ, TNF-α, and M-CSF) or antiatherogenic (IL-10) and (ii) that some cytokines (IL-4, IL-6 and GM-CSF) can exert pro- or anti-atherogenic effects depending on the experimental conditions. This knowledge can be used for improved early detection, prevention and treatment of atherosclerosis

    Expression analysis of the TAB2 protein in adult mouse tissues

    Get PDF
    Background: The Interleukin-1 (IL-1) signaling component TAK1 binding protein 2 (TAB2) plays a role in activating the NFκB and JNK signaling pathways. Additionally, TAB2 functions in the nucleus as a repressor of NFκB-mediated gene regulation. Objective: To obtain insight into the function of TAB2 in the adult mouse, we analyzed the in vivo TAB2 expression pattern. Materials and methods: Cell lines and adult mouse tissues were analyzed for TAB2 protein expression and localization. Results: Immunohistochemical staining for TAB2 protein revealed expression in the vascular endothelium of most tissues, hematopoietic cells and brain cells. While TAB2 is localized in both the nucleus and the cytoplasm in cell lines, cytoplasmic localization predominates in hematopoietic tissues in vivo. Conclusions: The TAB2 expression pattern shows striking similarities with previously reported IL-1 receptor expression and NFκB activation patterns, suggesting that TAB2 in vivo is playing a role in these signaling pathways

    The heparan sulfate sulfotransferase 3-OST3A (HS3ST3A) is a novel tumor regulator and a prognostic marker in breast cancer

    Get PDF
    International audienceHeparan sulfate (HS) proteoglycan chains are key components of the breast tumor microenvironment that critically influence the behavior of cancer cells. It is established that abnormal synthesis and processing of HS play a prominent role in tumorigenesis, albeit mechanisms remain mostly obscure. HS function is mainly controlled by sulfotransferases, and here we report a novel cellular and pathophysiological significance for the 3-O-sulfotransferase 3-OST3A (HS3ST3A), catalyzing the final maturation step of HS, in breast cancer. We show that 3-OST3A is epigenetically repressed in all breast cancer cell lines of a panel representative of distinct molecular subgroups, except in human epidermal growth factor receptor 2-positive (HER2+) sloan-kettering breast cancer (SKBR3) cells. Epigenetic mechanisms involved both DNA methylation and histone modifications, producing different repressive chromatin environments depending on the cell molecular signature. Gain and loss of function experiments by cDNA and siRNA transfection revealed profound effects of 3-OST3A expression on cell behavior including apoptosis, proliferation, response to trastuzumab in vitro and tumor growth in xenografted mice. 3-OST3A exerted dual activities acting as tumor-suppressor in lumA-michigan cancer foundation (MCF)-7 and triple negative-MD Anderson (MDA) metastatic breast (MB)-231 cells, or as an oncogenic factor in HER2+-SKBR3 cells. Mechanistically, fluorescence-resonance energy transfer-fluorescence-lifetime imaging microscopy experiments indicated that the effects of 3-OST3A in MCF-7 cells were mediated by altered interactions between HS and fibroblast growth factor-7 (FGF-7). Further, this interplay between HS and FGF-7 modulated downstream ERK, AKT and p38 cascades, suggesting that altering 3-O-sulfation affects FGFR2IIIb-mediated signaling. Corroborating our cellular data, a clinical study conducted in a cohort of breast cancer patients uncovered that, in HER2+ patients, high level expression of 3-OST3A in tumors was associated with reduced relapse-free survival. Our findings define 3-OST3A as a novel regulator of breast cancer pathogenicity, displaying tumor-suppressive or oncogenic activities in a cell-and tumor-dependent context, and demonstrate the clinical value of the HS-O-sulfotransferase 3-OST3A as a prognostic marker in HER2+ patients

    Genetic Basis of Inherited Macular Dystrophies and Implications for Stem Cell Therapy

    Get PDF
    Untreatable hereditary macular dystrophy (HMD) presents a major burden to society in terms of the resulting patient disability and the cost to the healthcare provision system. HMD results in central vision loss in humans sufficiently severe for blind registration, and key issues in the development of therapeutic strategies to target these conditions are greater understanding of the causes of photoreceptor loss and the development of restorative procedures. More effective and precise analytical techniques coupled to the development of transgenic models of disease have led to a prolific growth in the identification and our understanding of the genetic mutations that underly HMD. Recent successes in driving differentiation of pluripotent cells towards specific somatic lineages have led to the development of more efficient protocols that can yield enriched populations of a desired phenotype. Retinal pigmented epithelial cells and photoreceptors derived from these are some of the most promising cells that may soon be used in the treatment of specific HMD, especially since rapid developments in the field of induced pluripotency have now set the stage for the production of patient-derived stem cells that overcome the ethical and methodological issues surrounding the use of embryonic derivatives. In this review we highlight a selection of HMD which appear suitable candidates for combinatorial restorative therapy, focusing specifically on where those photoreceptor loss occurs. This technology, along with increased genetic screening, opens up an entirely new pathway to restore vision in patients affected by HMD

    The chicken IL-1 family: evolution in the context of the studied vertebrate lineage

    Get PDF
    The interleukin-1 gene family encodes a group of related proteins that exhibit a remarkable pleiotropy in the context of health and disease. The set of indispensable functions they control suggests that these genes should be found in all eukaryotic species. The ligands and receptors of this family have been primarily characterised in man and mouse. The genomes of most non-mammalian animal species sequenced so far possess all of the IL-1 receptor genes found in mammals. Yet, strikingly, very few of the ligands are identifiable in non-mammalian genomes. Our recent identification of two further IL-1 ligands in the chicken warranted a critical reappraisal of the evolution of this vitally important cytokine family. This review presents substantial data gathered across multiple, divergent metazoan genomes to unambiguously trace the origin of these genes. With the hypothesis that all of these genes, both ligands and receptors, were formed in a single ancient ancestor, extensive database mining revealed sufficient evidence to confirm this. It therefore suggests that the emergence of mammals is unrelated to the expansion of the IL-1 family. A thorough review of this cytokine family in the chicken, the most extensively studied amongst non-mammalian species, is also presented. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00251-014-0780-7) contains supplementary material, which is available to authorized users

    Intracellular interleukin-1 receptor antagonist type 1 antagonizes the stimulatory effect of interleukin-1 alpha precursor on cell motility

    No full text
    Interleukin (IL)-1alpha, a proinflammatory cytokine, is produced as a 33 kDa protein precursor (preIL-1alpha) which is cleaved to generate the 17 kDa C-terminal mature IL-1alpha (mIL-1alpha) and the 16kDa N-terminal IL-1alpha propiece (NIL-1alpha). The biological effect of IL-1alpha is regulated by the IL-1 receptor antagonist (IL-1Ra), its naturally occurring inhibitor. Four different isoforms of the IL-1Ra have been described, one secreted (sIL-1Ra) and three intracellular (icIL-1Ra1, 2, 3). Whether the icIL-1Ra1 isoform can antagonize some of the biological effects of intracellular IL-1alpha is still unknown. The aim of this study is to investigate effects of preIL-1alpha and icIL-1Ra1 on cell motility in stably transfected ECV304 cells. We show that expression of preIL-1alpha in ECV304 cells significantly increases cell motility. Furthermore, transfection with NIL-1alpha propiece also increases cell motility whereas this stimulatory effect was not observed by addition of exogenous mIL-1alpha, suggesting an intracellular effect of preIL-1alpha mediated by NIL-1alpha propiece. Co-transfection of ECV304 cells with icIL-1Ra1 completely antagonizes the stimulatory effect of preIL-1alpha and NIL-1alpha propiece on cell motility. In conclusion, NIL-1alpha propiece increases ECV304 cell motility and icIL-1Ra1 exerts intracellular functions regulating this stimulatory effect
    corecore