177 research outputs found
Theoretical approach of the catalytic hydrochlorination of the 3-amino-2H-1,2,4-triazole
This study was aimed to determine the sites of protonation of the molecule during the hydrochlorination of 3-amino-2H-1,2,4-triazole. The catalytic reaction was carried out on the site MoS3H2 + and on the site ZnCl2. On both catalysts, the reaction led to a selective protonation of the molecule on the same atom of nitrogen of the cycle. But the reaction is endothermic and exothermic on the MoS3H3 + and ZnCl2 catalytic sites, respectively. The calculation method used is Hartree-Fock (HF) in the lanl2dz basis set
Stapling and Section of the Nasogastric Tube during Sleeve Gastrectomy: How to Prevent and Recover?
Bariatric surgery has become an integral part of morbid obesity treatment with well-defined indications. Some complications, specific or not, due to laparoscopic sleeve gastrectomy (LSG) procedure have recently been described. We report a rare complication unpublished to date: a nasogastric section during great gastric curve stapling. A 44-year-old woman suffered of severe obesity (BMI 36.6 kg/m2) with failure of medical treatments for years. According to already published technique, a LSG was performed. Six hours postoperatively, a nurse removed the nasogastric tube according to the local protocol and the nasogastric tube was abnormally short, with staples at its extremity. Surgery was performed with peroperative endoscopy. In conclusion, this is the first publication of a nasogastric section during LSG. Therefore we report this case and propose a solution to prevent its occurrence. To avoid this kind of accident, we now systematically insert the nasogastric tube by mouth through a Guedel cannula. Then, to insert the calibrating bougie, we entirely withdraw the nasogastric tube
Beyond here and now: Evaluating pollution estimation across space and time from street view images with deep learning
Advances in computer vision, driven by deep learning, allows for the inference of environmental pollution and its potential sources from images. The spatial and temporal generalisability of image-based pollution models is crucial in their real-world application, but is currently understudied, particularly in low-income countries where infrastructure for measuring the complex patterns of pollution is limited and modelling may therefore provide the most utility. We employed convolutional neural networks (CNNs) for two complementary classification models, in both an end-to-end approach and as an interpretable feature extractor (object detection), to estimate spatially and temporally resolved fine particulate matter (PM2.5) and noise levels in Accra, Ghana. Data used for training the models were from a unique dataset of over 1.6 million images collected over 15 months at 145 representative locations across the city, paired with air and noise measurements. Both end-to-end CNN and object-based approaches surpassed null model benchmarks for predicting PM2.5 and noise at single locations, but performance deteriorated when applied to other locations. Model accuracy diminished when tested on images from locations unseen during training, but improved by sampling a greater number of locations during model training, even if the total quantity of data was reduced. The end-to-end models used characteristics of images associated with atmospheric visibility for predicting PM2.5, and specific objects such as vehicles and people for noise. The results demonstrate the potential and challenges of image-based, spatiotemporal air pollution and noise estimation, and that robust, environmental modelling with images requires integration with traditional sensor networks
Beyond here and now: Evaluating pollution estimation across space and time from street view images with deep learning
Advances in computer vision, driven by deep learning, allows for the inference of environmental pollution and its potential sources from images. The spatial and temporal generalisability of image-based pollution models is crucial in their real-world application, but is currently understudied, particularly in low-income countries where infrastructure for measuring the complex patterns of pollution is limited and modelling may therefore provide the most utility. We employed convolutional neural networks (CNNs) for two complementary classification models, in both an end-to-end approach and as an interpretable feature extractor (object detection), to estimate spatially and temporally resolved fine particulate matter (PM2.5) and noise levels in Accra, Ghana. Data used for training the models were from a unique dataset of over 1.6 million images collected over 15 months at 145 representative locations across the city, paired with air and noise measurements. Both end-to-end CNN and object-based approaches surpassed null model benchmarks for predicting PM2.5 and noise at single locations, but performance deteriorated when applied to other locations. Model accuracy diminished when tested on images from locations unseen during training, but improved by sampling a greater number of locations during model training, even if the total quantity of data was reduced. The end-to-end models used characteristics of images associated with atmospheric visibility for predicting PM2.5, and specific objects such as vehicles and people for noise. The results demonstrate the potential and challenges of image-based, spatiotemporal air pollution and noise estimation, and that robust, environmental modelling with images requires integration with traditional sensor networks
Recommended from our members
Inequalities in urban air pollution in sub-Saharan Africa: an empirical modeling of ambient NO and NO2 concentrations in Accra, Ghana
Road traffic has become the leading source of air pollution in fast-growing sub-Saharan African cities. Yet, there is a dearth of robust city-wide data for understanding space-time variations and inequalities in combustion related emissions and exposures. We combined nitrogen dioxide (NO2) and nitric oxide (NO) measurement data from 134 locations in the Greater Accra Metropolitan Area (GAMA), with geographical, meteorological, and population factors in spatio-temporal mixed effects models to predict NO2 and NO concentrations at fine spatial (50 m) and temporal (weekly) resolution over the entire GAMA. Model performance was evaluated with 10-fold cross-validation (CV), and predictions were summarized as annual and seasonal (dusty [Harmattan] and rainy [non-Harmattan]) mean concentrations. The predictions were used to examine population distributions of, and socioeconomic inequalities in, exposure at the census enumeration area (EA) level. The models explained 88% and 79% of the spatiotemporal variability in NO2 and NO concentrations, respectively. The mean predicted annual, non-Harmattan and Harmattan NO2 levels were 37 (range: 1–189), 28 (range: 1–170) and 50 (range: 1–195) µg m−3, respectively. Unlike NO2, NO concentrations were highest in the non-Harmattan season (41 [range: 31–521] µg m−3). Road traffic was the dominant factor for both pollutants, but NO2 had higher spatial heterogeneity than NO. For both pollutants, the levels were substantially higher in the city core, where the entire population (100%) was exposed to annual NO2 levels exceeding the World Health Organization (WHO) guideline of 10 µg m−3. Significant disparities in NO2 concentrations existed across socioeconomic gradients, with residents in the poorest communities exposed to levels about 15 µg m−3 higher compared with the wealthiest (p < 0.001). The results showed the important role of road traffic emissions in air pollution concentrations in the GAMA, which has major implications for the health of the city's poorest residents. These data could support climate and health impact assessments as well as policy evaluations in the city
Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015
SummaryBackground The Global Burden of Diseases, Injuries, and Risk Factors Study 2015 provides an up-to-date synthesis of the evidence for risk factor exposure and the attributable burden of disease. By providing national and subnational assessments spanning the past 25 years, this study can inform debates on the importance of addressing risks in context. Methods We used the comparative risk assessment framework developed for previous iterations of the Global Burden of Disease Study to estimate attributable deaths, disability-adjusted life-years (DALYs), and trends in exposure by age group, sex, year, and geography for 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks from 1990 to 2015. This study included 388 risk-outcome pairs that met World Cancer Research Fund-defined criteria for convincing or probable evidence. We extracted relative risk and exposure estimates from randomised controlled trials, cohorts, pooled cohorts, household surveys, census data, satellite data, and other sources. We used statistical models to pool data, adjust for bias, and incorporate covariates. We developed a metric that allows comparisons of exposure across risk factors—the summary exposure value. Using the counterfactual scenario of theoretical minimum risk level, we estimated the portion of deaths and DALYs that could be attributed to a given risk. We decomposed trends in attributable burden into contributions from population growth, population age structure, risk exposure, and risk-deleted cause-specific DALY rates. We characterised risk exposure in relation to a Socio-demographic Index (SDI). Findings Between 1990 and 2015, global exposure to unsafe sanitation, household air pollution, childhood underweight, childhood stunting, and smoking each decreased by more than 25%. Global exposure for several occupational risks, high body-mass index (BMI), and drug use increased by more than 25% over the same period. All risks jointly evaluated in 2015 accounted for 57·8% (95% CI 56·6–58·8) of global deaths and 41·2% (39·8–42·8) of DALYs. In 2015, the ten largest contributors to global DALYs among Level 3 risks were high systolic blood pressure (211·8 million [192·7 million to 231·1 million] global DALYs), smoking (148·6 million [134·2 million to 163·1 million]), high fasting plasma glucose (143·1 million [125·1 million to 163·5 million]), high BMI (120·1 million [83·8 million to 158·4 million]), childhood undernutrition (113·3 million [103·9 million to 123·4 million]), ambient particulate matter (103·1 million [90·8 million to 115·1 million]), high total cholesterol (88·7 million [74·6 million to 105·7 million]), household air pollution (85·6 million [66·7 million to 106·1 million]), alcohol use (85·0 million [77·2 million to 93·0 million]), and diets high in sodium (83·0 million [49·3 million to 127·5 million]). From 1990 to 2015, attributable DALYs declined for micronutrient deficiencies, childhood undernutrition, unsafe sanitation and water, and household air pollution; reductions in risk-deleted DALY rates rather than reductions in exposure drove these declines. Rising exposure contributed to notable increases in attributable DALYs from high BMI, high fasting plasma glucose, occupational carcinogens, and drug use. Environmental risks and childhood undernutrition declined steadily with SDI; low physical activity, high BMI, and high fasting plasma glucose increased with SDI. In 119 countries, metabolic risks, such as high BMI and fasting plasma glucose, contributed the most attributable DALYs in 2015. Regionally, smoking still ranked among the leading five risk factors for attributable DALYs in 109 countries; childhood underweight and unsafe sex remained primary drivers of early death and disability in much of sub-Saharan Africa. Interpretation Declines in some key environmental risks have contributed to declines in critical infectious diseases. Some risks appear to be invariant to SDI. Increasing risks, including high BMI, high fasting plasma glucose, drug use, and some occupational exposures, contribute to rising burden from some conditions, but also provide opportunities for intervention. Some highly preventable risks, such as smoking, remain major causes of attributable DALYs, even as exposure is declining. Public policy makers need to pay attention to the risks that are increasingly major contributors to global burden. Funding Bill & Melinda Gates Foundation
Prognostic implications of negative dobutamine stress echocardiography in African Americans compared to Caucasians
This is an Open Access article distributed under the terms of the Creative Commons Attribution Licens
Study protocol: the sleeping sound with attention-deficit/hyperactivity disorder project
<p>Abstract</p> <p>Background</p> <p>Up to 70% of children with Attention-Deficit/Hyperactivity Disorder (ADHD) experience sleep problems including difficulties initiating and maintaining sleep. Sleep problems in children with ADHD can result in poorer child functioning, impacting on school attendance, daily functioning and behaviour, as well as parental mental health and work attendance. The Sleeping Sound with ADHD trial aims to investigate the efficacy of a behavioural sleep program in treating sleep problems experienced by children with ADHD. We have demonstrated the feasibility and the acceptability of this treatment program in a pilot study.</p> <p>Methods/Design</p> <p>This randomised controlled trial (RCT) is being conducted with 198 children (aged between 5 to 12 years) with ADHD and moderate to severe sleep problems. Children are recruited from public and private paediatric practices across the state of Victoria, Australia. Upon receiving informed written consent, families are randomised to receive either the behavioural sleep intervention or usual care. The intervention consists of two individual, face-to-face consultations and a follow-up phone call with a trained clinician (trainee consultant paediatrician or psychologist), focusing on the assessment and management of child sleep problems. The primary outcome is parent- and teacher-reported ADHD symptoms (ADHD Rating Scale IV). Secondary outcomes are child sleep (actigraphy and parent report), behaviour, daily functioning, school attendance and working memory, as well as parent mental health and work attendance. We are also assessing the impact of children's psychiatric comorbidity (measured using a structured diagnostic interview) on treatment outcome.</p> <p>Discussion</p> <p>To our knowledge, this is the first RCT of a behavioural intervention aiming to treat sleep problems in children with ADHD. If effective, this program will provide a feasible non-pharmacological and acceptable intervention improving child sleep and ADHD symptoms in this patient group.</p> <p>Trial Registration</p> <p>Current Controlled Trials ISRCTN68819261.</p> <p> ISRCTN: <a href="http://www.controlled-trials.com/ISRCTN68819261">ISRCTN68819261</a></p
Assessing the queuing process using data envelopment analysis:an application in health centres
Queuing is one of the very important criteria for assessing the performance and efficiency of any service industry, including healthcare. Data Envelopment Analysis (DEA) is one of the most widely-used techniques for performance measurement in healthcare. However, no queue management application has been reported in the health-related DEA literature. Most of the studies regarding patient flow systems had the objective of improving an already existing Appointment System. The current study presents a novel application of DEA for assessing the queuing process at an Outpatients’ department of a large public hospital in a developing country where appointment systems do not exist. The main aim of the current study is to demonstrate the usefulness of DEA modelling in the evaluation of a queue system. The patient flow pathway considered for this study consists of two stages; consultation with a doctor and pharmacy. The DEA results indicated that waiting times and other related queuing variables included need considerable minimisation at both stages
Health in times of uncertainty in the eastern Mediterranean region, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013
Background:
The eastern Mediterranean region is comprised of 22 countries: Afghanistan, Bahrain, Djibouti, Egypt, Iran, Iraq, Jordan, Kuwait, Lebanon, Libya, Morocco, Oman, Pakistan, Palestine, Qatar, Saudi Arabia, Somalia, Sudan, Syria, Tunisia, the United Arab Emirates, and Yemen. Since our Global Burden of Disease Study 2010 (GBD 2010), the region has faced unrest as a result of revolutions, wars, and the so-called Arab uprisings. The objective of this study was to present the burden of diseases, injuries, and risk factors in the eastern Mediterranean region as of 2013.
Methods:
GBD 2013 includes an annual assessment covering 188 countries from 1990 to 2013. The study covers 306 diseases and injuries, 1233 sequelae, and 79 risk factors. Our GBD 2013 analyses included the addition of new data through updated systematic reviews and through the contribution of unpublished data sources from collaborators, an updated version of modelling software, and several improvements in our methods. In this systematic analysis, we use data from GBD 2013 to analyse the burden of disease and injuries in the eastern Mediterranean region specifically.
Findings:
The leading cause of death in the region in 2013 was ischaemic heart disease (90·3 deaths per 100 000 people), which increased by 17·2% since 1990. However, diarrhoeal diseases were the leading cause of death in Somalia (186·7 deaths per 100 000 people) in 2013, which decreased by 26·9% since 1990. The leading cause of disability-adjusted life-years (DALYs) was ischaemic heart disease for males and lower respiratory infection for females. High blood pressure was the leading risk factor for DALYs in 2013, with an increase of 83·3% since 1990. Risk factors for DALYs varied by country. In low-income countries, childhood wasting was the leading cause of DALYs in Afghanistan, Somalia, and Yemen, whereas unsafe sex was the leading cause in Djibouti. Non-communicable risk factors were the leading cause of DALYs in high-income and middle-income countries in the region. DALY risk factors varied by age, with child and maternal malnutrition affecting the younger age groups (aged 28 days to 4 years), whereas high bodyweight and systolic blood pressure affected older people (aged 60–80 years). The proportion of DALYs attributed to high body-mass index increased from 3·7% to 7·5% between 1990 and 2013. Burden of mental health problems and drug use increased. Most increases in DALYs, especially from non-communicable diseases, were due to population growth. The crises in Egypt, Yemen, Libya, and Syria have resulted in a reduction in life expectancy; life expectancy in Syria would have been 5 years higher than that recorded for females and 6 years higher for males had the crisis not occurred.
Interpretation:
Our study shows that the eastern Mediterranean region is going through a crucial health phase. The Arab uprisings and the wars that followed, coupled with ageing and population growth, will have a major impact on the region's health and resources. The region has historically seen improvements in life expectancy and other health indicators, even under stress. However, the current situation will cause deteriorating health conditions for many countries and for many years and will have an impact on the region and the rest of the world. Based on our findings, we call for increased investment in health in the region in addition to reducing the conflicts
- …