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Abstract 

Advances in computer vision, driven by deep learning, allows for the inference of environmental 

pollution and its potential sources from images. The spatial and temporal generalisability of 

image-based pollution models is crucial in their real-world application, but is currently 

understudied, particularly in low-income countries where infrastructure for measuring the 

complex patterns of pollution is limited and modelling may therefore provide the most utility. 

We employed convolutional neural networks (CNNs) for two complementary classification 

models, in both an end-to-end approach and as an interpretable feature extractor (object 

detection), to estimate spatially and temporally resolved fine particulate matter (PM2.5) and noise 
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levels in Accra, Ghana. Data used for training the models were from a unique dataset of over 1.6 

million images collected over 15 months at 145 representative locations across the city, paired 

with air and noise measurements. Both end-to-end CNN and object-based approaches surpassed 

null model benchmarks for predicting PM2.5 and noise at single locations, but performance 

deteriorated when applied to other locations. Model accuracy diminished when tested on images 

from locations unseen during training, but improved by sampling a greater number of locations 

during model training, even if the total quantity of data was reduced. The end-to-end models 

used characteristics of images associated with atmospheric visibility for predicting PM2.5, and 

specific objects such as vehicles and people for noise. The results demonstrate the potential and 

challenges of image-based, spatiotemporal air pollution and noise estimation, and that robust, 

environmental modelling with images requires integration with traditional sensor networks. 

 

Keywords: Deep learning; computer vision; air pollution; noise pollution; street-view images; 

environmental modelling 

 

1) Introduction 

The urban population in low- and middle-income countries (LMICs) increased from 357 million 

in 1950 to 3.39 billion in 2020, with the majority of the LMIC population now living in cities 

(United Nations, Department of Economic and Social Affairs, & Population Division, 2019). 

While cities offer their inhabitants better access to infrastructure, services and economic 

opportunity (Ezzati et al., 2018), factors such as road transport and residential and commercial 
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energy generation can also increase hazardous environmental exposures, including air and noise 

pollution
 
(Kammen and Sunter, 2016; Kelly and Zhu, 2016). Although some sources of urban 

pollution in LMICs, such as vehicular traffic, are similar to those of many high income countries, 

there are also differences in the sources, and in their spatial and temporal patterns (Alli et al., 

2021; Amegah and Agyei-Mensah, 2017; Clark et al., 2021; Deng et al., 2020; Ebare et al., 2011; 

Weagle et al., 2018; Zhou et al., 2013) such as seasonal Saharan Desert dust storms (Zhou et al., 

2013), burning biomass fuels for cooking and heating, and the use of diesel generators where 

there are intermittent electricity outages (Dionisio Kathie L. et al., 2010). 

Data on the patterns of air and noise pollution and their sources across space and time are needed 

to identify and evaluate mitigation measures and policies. However, collecting such data is 

challenging in resource-constrained settings (Brauer et al., 2019; Clark et al., 2020; Khan et al., 

2018). Recent methodological advances in image processing and analysis, particularly in the 

form of deep convolutional neural networks, have demonstrated that street-level images can help 

with predicting air and noise pollution levels (Ganji et al., 2020; Hong et al., 2020; Qi and 

Hankey, 2021; Weichenthal et al., 2019), contingent on initial data measurements needed to 

develop the image-based pollution estimation models. So far, image-based pollution models have 

largely been developed for East Asia (Chakma et al., 2017; Feng et al., 2021; Gu et al., 2019; Liu 

et al., 2016, 2015; Wang et al., 2022; Won et al., 2022; Zhang et al., 2018) and North America 

(Ganji et al., 2020; Hong et al., 2020; Qi and Hankey, 2021), typically based on a few weeks’ 

observation at selected locations, asynchronous or spatially distant from pollution measurements. 

Few studies have sought to predict spatially and temporally resolved pollution from images, and 

none in Africa, the world’s fastest urbanising region (United Nations, Department of Economic 

and Social Affairs, & Population Division, 2019). 
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We developed and evaluated machine learning models to predict temporally and spatially 

varying noise and fine particulate matter (PM2.5; particles <2.5 µm in diameter, with known 

human health impacts (Pope and Dockery, 2006)) levels from street-level images in Accra, 

Ghana. We used deep convolutional neural networks (CNNs), which learn robust and 

hierarchical feature representations that give them superior performance for many image-

processing tasks (Schmidhuber 2015; Gu et al. 2018), in two complementary strategies. The first 

used a CNN, without a priori assumptions on the image features relevant for prediction, and 

another used gradient boosted machines, applied to previously extracted, interpretable image 

features in the form of object counts, obtained from applying an object-detection CNN to each 

image. These models were applied to a bespoke dataset of over 1.6 million time-lapsed images 

co-located with PM2.5 and noise measurements, at 145 representative locations over 15 months 

(Clark et al., 2020). Models were trained and evaluated on subsets of data specifically to 

interrogate their temporal and spatial generalisability and in order to compare and contrast 

strategies for data collection with fixed resources when developing such models. We further 

assessed model performance for both the day and night time, different seasons, and types of 

urban land use.  

 

2) Data and Methodological Context and Contributions 

Some studies have predicted pollution from visual elements of the environment. Two studies, 

also from Accra, recorded PM2.5 and PM10 in selected neighbourhoods, in a multi-week 

measurement campaign (Dionisio Kathie L. et al., 2010; Rooney et al., 2012), together with 

researcher observations and census data on environmental factors, such as biomass fuels and 
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unpaved roads, to predict pollution levels. Some studies have also predicted pollution using 

remote sensing data, which differs from our study, not only in the view of the city, but also in 

spatial and temporal scales and the observable features in images (Sorek-Hamer et al., 2022; Wei 

et al., 2020; Weigand et al., 2019).  

Other studies used terrestrial images for predicting air pollution (Chakma et al., 2017; Feng et 

al., 2021; Ganji et al., 2020; Gu et al., 2019; Hong et al., 2020; Liu et al., 2016, 2015; Qi and 

Hankey, 2021; Wang et al., 2022; Won et al., 2022; Zhang et al., 2018), and one for noise (Hong 

et al., 2020) based on images and pollution measurement data though none had spatiotemporally 

linked image and pollution data during the night time, as we do. Previously adopted approaches 

span a variety of experimental configurations, making a unifying, quantitative comparison 

among studies infeasible. The specific metric of pollution (e.g., black carbon vs PM), timescales 

on which pollution is predicted (single measurement in time vs variation across day), spatial 

resolution (city-wide vs local), images used (static vs time-varying), data inputs (solely images 

vs inclusion of meteorological variables), temporal range (<~1 week vs multiple months of 

observation), synchrony between data sources (pollution and images <~5 min apart vs >~1 year 

apart), modelling approach (regression of continuous pollution data vs classification into 

different classes) and model inputs (specific features vs entire images), vary from study to study. 

Furthermore, within studies that used images as model inputs, a variety of features and feature 

extraction methods (object detection vs segmentation) were used, including in relation to 

stationarity of features in time (e.g., buildings and trees vs vehicles and pedestrians). The 

majority of studies used a single configuration from such choices depending on the available 

data, generating prediction tasks that are easier or more difficult relative to others. We outline the 

different experimental setups for previous studies in Appendix Table A. In the specific case of 
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cities in Africa, one study used street-view images to predict PM2.5 and NO2 across several cities, 

including Accra (Suel et al., 2022). Data used for model training were derived from modelled 

estimates of annual average pollution level with a model only evaluated, not trained, on data 

from Accra. 

Our work advances the state of knowledge in a number of ways. Our dataset is much larger and 

was collected over a longer duration than most previous image-based studies, comprising 145 

locations and a total (prior to merging with our pollution data) of 2.1 million images over 15 

months. We co-captured both air pollution and noise data with images in both day and night 

time. We predicted air pollution concentrations and noise levels at finer classification intervals, 

i.e. with classes that each encompass a smaller and more precise range as described in Section 

3.3, than comparable previous classification-based studies. We systematically evaluated both the 

spatial and temporal generalisability of models which is relevant for designing an optimal digital 

surveillance strategy and guiding data collection. Our study is unique in the use of both end-to-

end CNN (outcome-driven) and object-based (feature-driven) models, which both inform model 

selection and enhance model interpretability. Finally, to our knowledge, this is the first use of 

images for predicting both air and noise pollution in the context of an African city. 

 

3) Materials and Methods 

3.1) Data 

We collected co-located time-lapsed images at 5-minute intervals and PM2.5 and noise 

measurements averaged and recorded at 1-minute intervals in a field campaign from April 2019 

to June 2020, details of which are described in Appendix A and the study protocol paper
 
(Clark 
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et al., 2020). We had ten fixed sites where data were collected over 15 months, and 135 rotating 

sites where data was collected for one week. The fixed sites provided information for assessing 

temporal generalisability of models, and both fixed and rotating sites for assessing spatial 

generalisability. Sites were grouped into four land-use classes: commercial, business, industrial 

(CBI); informal, mostly high-density, settlements and slums; formal, mostly low- and medium-

density, residential areas; and “other” areas that are often peri-urban or rural, and can have dense 

vegetation (i.e., forest, grassland) or barren land (i.e., sand, soil, dirt). The classes for each fixed 

site are detailed in Appendix Table B.  

 

3.2) Research questions 

We developed two types of models that used images to predict noise and air pollution. We 

analysed how well our models’ prediction generalise across time and space, through the 

following research questions: 

 

1a) Temporal generalisability: How well do models trained on images taken from a single 

location predict noise and PM2.5 at different, random times at the same location?  

1b) Spatial generalisability: How well do models trained in 1a), which are based on a single 

location, generalise to another unseen location? 

2a) Spatial generalisability: How well do models trained using an abundance (~1,000,000 total 

across sites) of images from a set of nine (long-term) fixed sites, predict noise and PM2.5 at the 

remaining (10
th

) unseen location?  
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2b) Spatial generalisability: How well can models trained using fewer images (~100,000 total 

across sites) from ~90% of our 135 rotating sites, predict noise and PM2.5 at the remaining ~10% 

of sites?  

The fixed sites, due to their extended data collection period, comprised seven times as much data 

as rotating sites in total. Since in-situ pollution measurements are resource intensive, especially 

in quantities needed to train a CNN (Sun et al., 2017), there is a need to optimally allocate the 

use of cameras and pollution measurement hardware, as well as personnel time. Therefore we 

also investigated whether models trained using more data from a smaller number of (fixed) sites, 

or fewer data from a greater number of (rotating) sites led to more spatially generalisable CNN 

models: 

2c) Comparison of model types from 2a) and 2b): Do models perform better on multiple, unseen 

locations (remaining ~10% of rotating sites) when given an abundance of images from a few 

locations, or fewer images across a variety of locations?                                                                               

 

For each question, we divided our data into subsets for training and testing, as illustrated in 

Figure 1. The number of images belonging to each of the datasets is given in Appendix Table B.Jo
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Figure 1. Data use for training and testing of models. 

Each panel shows how data from fixed and rotating sites were allocated to training and testing 

sets, for each question posed in Section 3.2. For the training sets, indicated in blue, each block 

was further divided into a 75-25 split with the latter being used as a validation set during training 

configuration and hyperparameter determination. Final models were trained on the entire training 

set (including the validation set) and evaluated on the testing set, indicated in red. 
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Figure 2.  End-to-end (CNN) and object-based (GBM) modelling approaches.
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3.3) Modelling 

For all research questions, we trained models to predict levels of noise (dBA) or PM2.5 (µg/m
3
) at 

a given time (1-minute averaged interval) and location from a single image taken within 30 

seconds of pollution measurement. We framed the prediction task as a classification problem, i.e. 

the models predict specific ranges (classes) in which noise and PM2.5 fall rather than as a 

continuous value, for two reasons. First, policy targets and guidelines, such as those of the World 

Health Organization (Basner and McGuire, 2018; World Health Organization, 2021), tend to be 

formulated based on discrete levels. Second, a preliminary analysis indicated that models trained 

explicitly for classification outperformed regression models trained for continuous value 

prediction, as detailed in Appendix C. The classes for noise were: <=39, 40 to <45, 45 to <50, 50 

to <55, 55 to <60, 60 to <65, 65 to <70, 70 to <75, 75 to <80, >=80 dBA. The classes for PM2.5 

were:  0 to <5, 5 to <10, 10 to <15, 15 to <20, 20 to <25, 25 to <30, 30 to <40, 40 to <50, 50 to 

<100, 100 to <150, >=150 µg/m
3
.  

 

For both forms of pollution, we produced two classification models (Figure 2). The first, referred 

to as end-to-end classification, used an entire unprocessed image, with red, green and blue pixel 

channels, as input to a CNN to predict pollution class. No assumptions were made on relevant 

image features, which were learned from the data. The second group of models used counts of 

objects detected from images as input for classification via gradient boosted machines 

(Friedman, 2001) (GBM). Other approaches to feature extraction from images, such as semantic 

segmentation, could also have been employed to provide model inputs for pollution estimation, 

as used in a North American study (Qi and Hankey, 2021). We used objects in our second 

approach since the data needed to train a model, namely objects, were less resource intensive to 
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generate within our bespoke dataset with bounding boxes (Nathvani et al., 2022) as compared 

with pixel-level annotation, which may also be explored in future work. The object counts were 

obtained from training an object detection CNN, described in detail in previous work (Nathvani 

et al., 2022), for object categories relevant to the local environmental context: persons, market 

vendor (a person carrying a container over their heads which is a common scene in African 

markets), car, taxi, pick-up truck, bus, lorry, van, tro-tro (mini buses used for public 

transportation), motorcycle, bicycle, market stall, loudspeaker, umbrella (commonly used to 

protect market and roadside vendors from the sun and rain), cookstove, cooking pot/bowl (which 

frequently contain wares for sale in the marketplace), food, trash, (piece of) debris, and animal. 

All object categories are those which may vary over time at a given place, since although other 

static features, such as buildings or trees, may also affect noise and air pollution, their 

unchanging presence over daily timescales is less informative for predicting temporal variation 

in pollution at a single location (such as those models developed in 1a and 1b). The accuracy 

with which these objects could be detected in our images is given in Appendix Table C and 

described in previous work
 
(Nathvani et al., 2022). In this analysis, we did not use counts of 

cookstove, loudspeakers, market vendors or buses, due to their sparse presence in our data (<10 

counts of each in 2.1 million images). The end-to-end and feature-driven approaches are 

complementary with respect to flexibility and feature agnosticism versus prior assumption and 

interpretability
 
(Zhang and Zhu, 2018).  

 

3.4) Data preparation. 

We prepared our data in the following manner for the purpose of training and evaluating both 

CNN and object-GBM models. First, due to the Covid-19 pandemic and associated lockdown in 
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Accra from March 30
th

 to April 20
th

 2020, we excluded images and pollution data from March 

23
rd

 to May 11
th

 2020, when we were unable to attend to the regular maintenance of monitoring 

hardware, and therefore data collection was incomplete and uneven across sites. 

 

A small number of cameras experienced internal failure of their clocks, resetting to a factory 

default of January 2017 at the start of their deployment, which led to images recorded with 

incorrect timestamps. We corrected the timestamps for these images by re-assigning the initial 

timestamp based on the start of the monitoring period, which was recorded on a log-sheet when 

visiting every site. Since each image thereafter was captured at regular five minute intervals, 

subsequent images were assigned time stamps at five minute intervals. Finally, a small fraction 

(<1%) of images and pollution data were corrupted and hence unreadable by code. These data 

were excluded. 

 

Images and pollution data were combined by assigning each image the pollution observation 

nearest in time, with a requirement that the pollution value was recorded within +/- 30 seconds of 

image capture. Where two cameras were placed at a site, both images are assigned pollution data 

based on this procedure. Some images did not have corresponding pollution values due to a lack 

of measurements when monitors failed or were unstable. For noise, 83-98% of fixed site images 

and 99% of rotating site images were assigned pollution data. For PM2.5, 68-89% of fixed site 

images and 79% of rotating site images were assigned pollution data. Full details are provided in 

Appendix Figure C. As mentioned in section 3.3 we applied a previously developed object 

detection CNN to all 2.1 million images in our unmerged data set to obtain information on the 

counts of different object categories within each image, which are used as numerical inputs for 
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our GBM models. Examples of the detected objects within our images may be seen in Appendix 

Figure D.  

 

1.6 million images were assigned corresponding PM2.5 values and 1.9 million images with noise 

values. Each dataset was divided into training, validation and test sets, as shown in Figure 1. The 

test set was 10% of all data. Training and validation sets (a 25% holdout of the remainder of 

data) were used to train the model and set hyperparameters. After determining hyperparameters, 

the final models were trained on the combined training and validation sets and evaluated on the 

test set. Both CNN and GBM models used the exact same sets of images, with the former using 

the entire image and the latter the counts of objects in each image. 

 

3.5) Model training 

 

3.5.1) End-to-end CNN 

We used a Residual Network with 101 layers (ResNeXt 101)
 

(Xie et al., 2017) as the 

convolutional neural network (CNN) architecture for classifying noise and PM2.5 levels from an 

entire image. The algorithm was implemented and trained in PyTorch
 
(Paszke et al., 2019) and 

was pretrained on ImageNet data to enable the CNN to recognise low level features, e.g., edges, 

which improved model performance, as seen in other computer vision tasks 
 
(Huh et al., 2016). 

 

During training, CNNs were given images resized to 224 ⨉ 224 pixels with an layer depths of 3 

to accommodate the Red, Green and Blue channels, with Z-score normalisation applied across all 

images to assist with the gradient descent process of learning
 
(LeCun et al., 2012). A modified 
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cross-entropy loss function with a log-barrier constraint (Belharbi et al., 2020) was used to 

account for the ordinal nature of pollution classes, as described in Appendix B. Training was 

performed on two NVIDIA Quadro RTX 6000 GPUs (48GB memory), with models taking 

approximately 1 hour per epoch and lasted for 30 epochs. The batch size was 32 images, using 

stochastic gradient descent with an initial learning rate of 0.001, a momentum of 0.9 and a step 

size of 40. Final models were those which performed best on the validation set during the 

training process, ranging from the 16-25th epoch. 

 

At training time, data augmentation was used to improve model generalisability and mitigate 

overfitting to the data
 
(Shorten and Khoshgoftaar, 2019), by uniformly, randomly cropping the 

image borders, with the central 90% area of the image always preserved, random rotations of the 

image between 10° anti-clockwise to 10° clockwise, and evenly random flipping of the image in 

the horizontal plane. These transformations correspond to the variance seen between camera 

images and the placement at different sites, which had different fields of view and camera 

orientations. 

 

3.5.2) Object-based Gradient Boosted Machines 

We used Gradient Boosting Machines or GBMs as the algorithm for classifying noise and PM2.5 

from specific, interpretable features, which were counts of objects detected within each image 

from a separate CNN
 
(Nathvani et al., 2022). GBMs are ensemble tree-based models which use 

“boosting”, i.e. adaptively changing the weights of data points in the training distribution during 

the learning process to improve performance on less easily predicted data
 
(Friedman, 2001), 

which were implemented XGBoost
 
(Chen and Guestrin, 2016)  in Python and Scikit-Learn
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(Pedregosa et al., 2011). GBMs have high efficacy across many problem domains with structured 

data inputs, due to their ability to learn non-linear relationships between features with robustness 

to outliers in a flexible and scalable manner (Chen and Guestrin, 2016). They offer advantages 

compared to linear models, which are more biased in complex data domains, computationally 

expensive models such as Support Vector Machines, and Artificial Neural Networks which are 

typically more cumbersome to optimise. Furthermore, in a preliminary analysis, GBMs had 

better performance, as measured by classification accuracy, than comparable tree-based methods 

such as decision trees and random forests. 

 

The input to the GBM models were vectors representing the counts of different objects in each 

image, e.g., (cars: 2, people: 3, umbrellas: 0…). The model hyperparameters were determined 

with Bayesian optimisation, with the validation set being used for fixed sites’ data and with 3-

fold cross validation when training on 9 folds of rotating site data (Figure 1) and a cross-entropy 

loss function. The search range for the parameters is given in Appendix Table D. Training was 

performed during the Bayesian hyperparameter tuning process and was stopped when 5 iterations 

of tuning yielded no further improvements in overall class prediction accuracy on the 

independent validation set.  

 

3.6) Model evaluation 

We compared the performance of both end-to-end and feature-driven approaches to infer 

plausible contributors to how they predict pollution. We calculated classification accuracy for 

exact class prediction as well as for when the model classified into the ground truth or adjacent 

class (shown as “same and ±1 class accuracy”). We evaluated all our models against a null 
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model which measures whether the models do better than simply taking the average from a 

distribution of training data. We also calculated the models’ accuracy for specific subsets of data 

under different environmental conditions, including day and night time, and the dry and dusty 

Harmattan season (November–February). During the Harmattan season dust from the Saharan 

Desert is carried by trade winds (Adetunji et al., 1979), and there is haze and “redness”(Adetunji 

et al., 1979; Anuforom, 2007; Ette and Olorode, 1988; McTainsh, 1980; Ochei and Adenola, 

2018; Pinker et al., 1994), caused by absorption and scattering of light (Groblicki et al., 1981; 

Waggoner and Weiss, 1980) and the dust itself, which has a red-brown colour (Breuning-Madsen 

and Awadzi, 2005; Lafon et al., 2004). These changes in visibility can inform air pollution 

estimation (Hyslop, 2009; Ozkaynak et al., 1985).  

For GBM models in 1a, we quantified the importance of each object for prediction via its 

permutation importance, which calculates the reduction in the model’s accuracy on the test set, 

before and after randomly shuffling the values of an input feature (in our case, counts in a given 

object category) across images. Object counts in our data were correlated amongst different 

object categories across images (Nathvani et al., 2022), e.g., people and cars. Therefore a given 

object’s importance score might be lower when multiple objects are used for prediction than 

when single objects are used, because other correlated objects capture some of the same 

information.  

 

4) Results and Discussion 

For noise, classification accuracy at different times in the same location (i.e. Question 1a) for 

both the end-to-end (CNN) and object-based (GBM) models ranged from 40-70% across sites, 
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considerably outperforming their null models (Figure 3). Accuracy increased to 80-90% for 

neighbouring (±1) class classification. The performance of the two models was similar, with 

CNNs slightly outperforming GBM models. Predictions at sites with high road-traffic, such as 

Asylum Down, Tema Motorway and N1 West Motorway, had higher accuracy than those at 

other sites. Noise predictions using CNN models were often more accurate in the daytime 

(59.9% average classification accuracy across all sites) than night time (49.8%) (Appendix 

Figure E) which may result from predictive features such as people, traffic and marketplace 

indicators (e.g., umbrellas) being present, and more visible in the day, as in Appendix Figure D, 

since street lighting conditions vary across our sites. 

PM2.5 classification had lower accuracy than that of noise in most model and site combinations 

(Figure 3). There was also a larger discrepancy between the predictive performance of CNN and 

GBM models for PM2.5, with CNN models achieving 30-55% classification accuracy and GBM 

models 15-25%, though both outperformed null model benchmarks. Sites with higher 

classification accuracy for noise performed less well for air, and vice versa; for example, the 

three poorest performing sites for noise (University of Ghana, Ashaiman and East Legon) had 

the greatest accuracy for CNN models when predicting PM2.5. Accuracy of CNN models reached 

70-90% for neighbouring class classification, and that of GBM models 30-50%. Unlike noise, 

performance of PM2.5 classification using CNN models differed little between day (40.2% 

average classification accuracy across all sites) and night time (39.6%) and had higher accuracy 

during the Harmattan period (57.7%) than in other times (35.1%) (Appendix Figure E), whereas 

GBM models had no consistent advantage during the Harmattan (17.5%) than in other times 

(19.9%) . 
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Figure 3. The classification accuracy achieved by CNN and GBM models trained and tested on 

images from the same fixed site (Question 1a) is shown for noise and PM2.5. 

 

When trained at one fixed site and tested at a different fixed site (Question 1b), accuracy dropped 

compared with same-site testing and CNN models for noise and PM2.5, and performed similar to 

null model benchmarks, demonstrating the inability of models to generalise from the 

measurements at a single site (Figure 4). For noise, the variation in accuracy of GBM models 

was greater than that of CNNs, but on average achieved greater improvement over null model 

benchmarks (+2.4%) than did CNNs (+0.9%). For PM2.5 accuracy ranged 7-20% for both GBM 

and CNN models, with the latter achieving greater improvement over the null model benchmarks 

(+0.9%) than did GBMs (+0.7%). In all cases, accuracy and null model performance broadly 

increased with Bhattacharya coefficient, a measure of the similarity of pollution distributions 
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between training and testing site (Bhattacharyya, 1943). 

 

Figure 4. The classification accuracy achieved by the CNN (left) and GBM (right) models 

trained and tested from images at one fixed site and tested at a different fixed site (Question 1b) 

for both noise (top) and PM2.5 (bottom) prediction. Points are coloured by the Bhattacharya 
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coefficient between the pollution distributions between the training and testing sites, which is a 

measure of the overlap between the distributions. Data points with a star indicate testing and 

training performed at the same site, as in 1a. All null models are from the fixed site used for 

training. Below each scatterplot the relative improvements in classification accuracy over the 

null model accuracy is given for each data point (i.e. the vertical distance between the round 

points and the dashed diagonal line in the scatterplot);  the purple dashed line shows the average 

across all data points, illustrating whether models achieved improvement over their benchmarks 

overall. 

 

Training on nine fixed sites with abundant (~1,000,000) data (Question 2a) produced similar 

results for generalising to a single, unseen fixed site as for models trained at single fixed sites 

(Appendix Figure F). For noise, accuracies were at best 30-40% for both CNN and GBM 

models, and in some instances similar to the null model; neither CNN or GBM models had a 

distinct advantage. For PM2.5, both CNN and GBM model accuracy remained similar to null 

model performance. CNN and GBM models trained using fewer images (~100,000) from ~90% 

of rotating sites (121-122 sites) for classifying noise and PM2.5 at the remaining rotating sites 

(Questions 2b) outperformed their respective null models (Figure 5). As in temporal 

transferability (Question 1a), models performed better in classifying noise than PM2.5, but the 

advantage of CNN over GBM models disappeared. Noise models had 25% accuracy for exact 

class and 65% when allowing for neighbouring class classification, with little variance (± 2.5%) 

between folds, whilst PM2.5 models had 17.5% accuracy, and 47.5% allowing for neighbouring 

class classification. For noise, but not for PM2.5, CNN accuracy for daytime images was 

significantly higher than on night time images (Appendix Figure G). CNN models had similar 
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performance across all land use categories for both forms of pollution (Appendix Figure G). 

Figure 5. Classification accuracy achieved by CNN and GBM models  trained and tested on 

images from rotating sites (Question 2b) for both noise and PM2.5  prediction. Accuracies are 

shown as the average over the folds of training data, as shown in Figure 1. The bars show the 

standard deviation of the accuracy across different folds.  

 

When comparing the approaches in Questions 2a (fewer sites with more data per sites) and 2b 

(more sites with fewer data per sites) with consistent test data (Question 2c), models trained on a 

smaller amount of data from many (rotating) sites performed better than those trained on many 

times more data from a smaller number of (fixed) sites, for both noise and air pollution models 

(Appendix Figure H). This suggests that with finite monitoring capacity, a diversity of locations 

for data gathering is more likely to produce spatial generalisability for pollution prediction using 

CNN models than long-term capture of data at fewer locations, highlighting the importance of 

optimising the spatial as well as temporal representativeness of data within cities for pollution 
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modelling, as seen in other domains of computer vision (Schat et al., 2020). 

 

4.1) Object feature importance 

In GBM models developed in 1a, cars, people, taxis, umbrellas and tro-tros contributed most to 

predictions for both noise and PM2.5 (Figure 5). For PM2.5, debris and trucks also contributed to 

prediction accuracy. These object categories were frequently detected in fixed site images. We 

calculated the Spearman correlation between object counts and noise and PM2.5 levels across 

images at each fixed site (Appendix Table E) in order to test whether this correlation explained 

an object's permutation importance. The explained variance, calculated as the square of Pearson 

correlation between object-pollution correlations and the permutation importance for each object 

was 0.86 for noise and 0.76 for PM2.5. Heuristically, the greater the correlation of an objects’ 

counts with that of pollution, the greater its contribution to model prediction accuracy, which 

may also indicate why noise models in 1a performed better than those for PM2.5. Since objects 

visible in the images had greater impact on the accuracy of noise prediction compared to PM2.5, 

CNN models for noise may have learned to rely on the same features as those used by the GBM 

models prediction. This may in turn explain the similar performance between the two models in 

1a, which we further examine in the section below. 

 

As shown in Figure 6, the objects with the highest permutation importance were various types of 

vehicles, consistent with previous research on the significant contributions from road traffic to 

both air and noise pollution (Dionisio Kathie L. et al., 2010; Onuu, 2000; Rooney et al., 2012). In 

addition, umbrellas were frequently present in images due to their extended use in the daytime to 

protect market vendors and their merchandise from the sun and rain. Markets also attract high 
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levels of vehicular traffic (Agyapong and Ojo, 2018), people (Asante, 2020; Asante and Mills, 

2020), and roadside cooking and food vending, which collectively increase noise and air 

pollution (Alli et al., 2021; Clark et al., 2021). Furthermore, for PM2.5 models, debris had higher 

than average feature importance. Although not a source, debris is more visible and readily 

detected by our object detection algorithm during daylight hours, serving as a proxy for time of 

day, and for sites with diurnal patterns of PM2.5. In addition, debris may be more visible when 

unobscured by other objects, acting as an implicit indicator for a lack of crowds or traffic, and 

instances where the road surface, from which dust particles may be resuspended, is exposed. 

 

Figure 6. Permutation importance for each object used as inputs to the noise and PM2.5 GBM 

models in Question 1a, for each fixed site. Permutation importance is calculated on the test set 

for each model, as shown in Figure 1. 

 

4.2) Harmattan influence 

To probe why CNN models in 1a performed better during the Harmattan season, when PM2.5 

levels were much higher, we derived characteristics of images related to changes in hue and haze 
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between Harmattan and non-Harmattan periods, since previous work has demonstrated that 

changes due to Harmattan dust, such as an increase in “redness” and haze are indicators and 

predictive factors for pollution (Adetunji et al., 1979; Anuforom, 2007; Ette and Olorode, 1988; 

McTainsh, 1980; Ochei and Adenola, 2018; Pinker et al., 1994), as well as light scattering from 

dust (Groblicki et al., 1981; Waggoner and Weiss, 1980). Other approaches for predicting 

pollution from images have also used these features (Feng et al. 2021; Wang et al. 2022; Liu et 

al. 2015; Ganji et al, 2020) and we therefore created feature metrics which relate to qualities of 

hue and haze in our images in order to study our models. For daytime images, we compared 

mean pixel intensity in each colour channel between these periods: red, green and blue. For 

night-time images in single-channel grayscale, we used mean pixel intensity and pixel intensity 

standard deviation (SD). Red pixel intensity was greater during the Harmattan period, whilst the 

opposite was seen for blue (Appendix Figure I). Furthermore, night-time pixel intensity was 

higher at eight of ten sites during Harmattan, while pixel SD was lower at seven sites. To infer to 

what extent this information was used by our CNN models for PM2.5 classification, we calculated 

Spearman correlations between mean red and blue pixel intensity and each image’s associated 

PM2.5 value (Appendix Table F). The average across sites was 0.11 for red pixel intensity and -

0.21 for blue pixel intensity. Similarly, grayscale pixel intensity tended to be positively 

correlated with air pollution, 0.10, whilst grayscale pixel SD was negatively correlated, -0.18, 

consistent with light sources appearing more diffuse in hazy conditions due to light scattering. 

The magnitude of these correlations was also greater during the Harmattan period, during which 

CNN models in 1a had greater accuracy (Appendix Table F). The Pearson correlation across all 

10 sites between the aforementioned Spearman correlations for red pixel intensity and the 

accuracy of a CNN model at that site in 1a, was 0.73. In heuristic terms, the greater the 
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correspondence between redness of image and air pollution, the better the model performed on 

average. 

 

4.3) Model interpretability across time and space 

Our results suggest that specific features, such as the objects selected for the GBM model, are 

better attuned at predicting noise, whilst predictive performance for PM2.5 is somewhat improved 

by leveraging more complex visual features from images such as red pixel channel intensity and 

haziness. This is supported by the discrepancy between day and night image accuracy for CNN 

models for noise in 1a and 2b, which may result from objects being more visible and present in 

the day than night, allowing CNN models to make more accurate predictions of noise, but not 

PM2.5, using daytime images. 

 

These observations also suggest that features learned by the CNN for noise classification are 

likely similar to the objects used by the GBM models, whilst being of less importance for CNN 

models for PM2.5. To investigate this, we generated a sample of gradient class activation maps
 

(Selvaraju et al., 2017) (Grad-CAMs) for our CNN models in 1a. Grad-CAMs use gradient 

descent to work backwards from a network’s class prediction from a given image to the regions 

in the image itself which most contributed to that prediction. Figure 7 shows that noise models 

focus either on visible objects or the location of main thoroughfares, whilst PM2.5 models tend to 

focus on either fixed features of the built environment, or the sky, supporting the possibility of 

the object-driven nature of noise models and the reliance of PM2.5 CNN models on complex 

visual features. This may be due to the fact that noise is transitory and spatially linked to sources 

or their proxies such as market stalls and their associated umbrellas. By contrast, PM2.5 persists 
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at a location longer than its sources, and is composed of both local (e.g., traffic) and non-local 

(dust, neighbouring regions’ emissions) sources. 

 

Figure 7. Grad-CAM visualisation heat maps for four fixed sites of different land-use categories, 

obtained from  CNN models. The highlighted regions in each image (red) indicate the features 

most salient to the model’s prediction, for that image. The same image is shown as used by the 

corresponding noise and PM2.5 models, developed in Question 1a. 
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5) Conclusions 

We used a unique dataset of co-located images and pollution measurements, and two different 

modelling approaches, to investigate how images predict spatially and temporally resolved noise 

and air pollution measurements in a major city in Africa. Most models developed in this work 

surpassed null model accuracy baselines, indicating that models can learn information latent to 

images, beyond extrapolation from outcome data. Models had similar performance across 

different land-use categories within the city and across both day and night time, with a slight 

advantage to model accuracy in the daytime for noise. However, even when training and testing 

models at single sites, classifying noise and PM2.5 with either CNN or GBM models had 

moderate performance. No model surpassed 80% classification accuracy, and performance was 

considerably lower when testing on previously unseen locations. This may be due to a 

combination of factors including the static nature of images, which may fail to capture transitory 

sources, e.g., emergency vehicle sirens, compared with exposures which are averaged over one 

minute’s observation. Furthermore some pollution sources (and predictors) are non-local or out 

of the field of view of the corresponding image’s camera.  Since the models developed in 

questions 1b to 2c rely on a single images from consumer-grade digital cameras to predict 

pollution in an unseen location, our dataset and methodology also informs on the viability of 

pollution modelling from comparable camera technology, including CCTV networks which are 

increasingly deployed in African cities and mobile phone camera capture, as has been used 

elsewhere in the literature. In addition, we intentionally tested models under the challenging 

condition of estimating pollution  from a single image in time and space, in order to 

independently and conservatively assess the additional benefit images may confer above data 

extrapolation. Future work could improve model accuracy by making use of CNN architectures 
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with multiple image inputs across time, or in the case of feature-driven prediction, with object 

counts across a series of time-points prior to the moment in time whose pollution levels are 

estimated. Similarly, image and/or object counts from neighbouring sites might also help predict 

pollution at a given location. These may prove especially beneficial for the prediction of PM2.5, 

whose presence is more persistent than many of its transitory sources, such as travelling cars. 

 

Where pollution sources are complex and vary widely across small spatial scales, the inclusion 

of data from many sites improved the spatial generalisability of CNN models in comparison to 

an abundance of data from a small number of locations. Our results highlight the importance of 

optimising the spatial as well as temporal representativeness of data gathered within cities for 

pollution modelling, as seen in other domains of computer vision (61). Although spatially 

representative data improved model performance, for CNNs model accuracy also varied under 

particular times of day and seasons, related to time-varying environmental factors. We also find 

that modelsare capable of making comparably accurate estimates for nighttime air and noise 

pollution, particularly for PM2.5 estimation,  when such data is gathered and used for modelling, 

alongside corresponding images. This shows the need for temporally diverse, paired pollution 

and image data that capture urban environmental change on both short (< 1 hour) and long (~1 

year) timescales. 

 

Overall, our results show that inference of noise and PM2.5 from imagery is a feasible but 

challenging task, especially as the spatial and temporal scale of prediction becomes smaller, 

which is relevant for detailed policy formulation, such as dynamic smart congestion pricing, and 

evaluation of impacts on human exposure. Therefore, accurate and generalisable estimates of 
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short timescale pollution in cities continues to require primary data collection at representative 

and diverse scales to support these efforts. 
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Highlights 

● Street-view image based deep learning models can extend pollution estimatation 

● Image and feature-based models are complimentary in flexibility and interpretability 

● Noise and air models use specific features (e.g. market umbrellas and haze) 

● Images and sensor networks can broaden pollution monitoring in African cities 

● Data collection for model development should prioritise spatial representativeness 
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