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H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• Street-view image based deep learning 
models can extend pollution estimation. 

• Image and feature-based models are 
complimentary in flexibility and 
interpretability. 

• Noise and air models use specific fea-
tures (e.g. market umbrellas and haze). 

• Images and sensor networks can 
broaden pollution monitoring in African 
cities. 

• Data collection for model development 
should prioritise spatial representativeness.  

A R T I C L E  I N F O   

Editor: Anastasia Paschalidou  

A B S T R A C T   

Advances in computer vision, driven by deep learning, allows for the inference of environmental pollution and its 
potential sources from images. The spatial and temporal generalisability of image-based pollution models is 
crucial in their real-world application, but is currently understudied, particularly in low-income countries where 
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infrastructure for measuring the complex patterns of pollution is limited and modelling may therefore provide 
the most utility. We employed convolutional neural networks (CNNs) for two complementary classification 
models, in both an end-to-end approach and as an interpretable feature extractor (object detection), to estimate 
spatially and temporally resolved fine particulate matter (PM2.5) and noise levels in Accra, Ghana. Data used for 
training the models were from a unique dataset of over 1.6 million images collected over 15 months at 145 
representative locations across the city, paired with air and noise measurements. Both end-to-end CNN and 
object-based approaches surpassed null model benchmarks for predicting PM2.5 and noise at single locations, but 
performance deteriorated when applied to other locations. Model accuracy diminished when tested on images 
from locations unseen during training, but improved by sampling a greater number of locations during model 
training, even if the total quantity of data was reduced. The end-to-end models used characteristics of images 
associated with atmospheric visibility for predicting PM2.5, and specific objects such as vehicles and people for 
noise. The results demonstrate the potential and challenges of image-based, spatiotemporal air pollution and 
noise estimation, and that robust, environmental modelling with images requires integration with traditional 
sensor networks.   

1. Introduction 

The urban population in low- and middle-income countries (LMICs) 
increased from 357 million in 1950 to 3.39 billion in 2020, with the 
majority of the LMIC population now living in cities (United Nations, 
Department of Economic and Social Affairs, and Population Division, 
2019). While cities offer their inhabitants better access to infrastructure, 
services and economic opportunity (Ezzati et al., 2018), factors such as 
road transport and residential and commercial energy generation can 
also increase hazardous environmental exposures, including air and 
noise pollution (Kammen and Sunter, 2016; Kelly and Zhu, 2016). 
Although some sources of urban pollution in LMICs, such as vehicular 
traffic, are similar to those of many high income countries, there are also 
differences in the sources, and in their spatial and temporal patterns 
(Alli et al., 2021; Amegah and Agyei-Mensah, 2017; Clark et al., 2021; 
Deng et al., 2020; Ebare et al., 2011; Weagle et al., 2018; Zhou et al., 
2013) such as seasonal Saharan Desert dust storms (Zhou et al., 2013), 
burning biomass fuels for cooking and heating, and the use of diesel 
generators where there are intermittent electricity outages (Dionisio 
et al., 2010). 

Data on the patterns of air and noise pollution and their sources 
across space and time are needed to identify and evaluate mitigation 
measures and policies. However, collecting such data is challenging in 
resource-constrained settings (Brauer and Guttikunda, 2019; Clark et al., 
2020; Khan et al., 2018). Recent methodological advances in image 
processing and analysis, particularly in the form of deep convolutional 
neural networks, have demonstrated that street-level images can help 
with predicting air and noise pollution levels (Ganji et al., 2020; Hong 
et al., 2020; Qi and Hankey, 2021; Weichenthal et al., 2019), contingent 
on initial data measurements needed to develop the image-based 
pollution estimation models. So far, image-based pollution models 
have largely been developed for East Asia (Chakma et al., 2017; Feng 
et al., 2021; Gu et al., 2019; Liu et al., 2016; Liu et al., 2015; Wang et al., 
2022; Won et al., 2022; Zhang et al., 2018) and North America (Ganji 
et al., 2020; Hong et al., 2020; Qi and Hankey, 2021), typically based on 
a few weeks’ observation at selected locations, asynchronous or spatially 
distant from pollution measurements. Few studies have sought to predict 
spatially and temporally resolved pollution from images, and none in 
Africa, the world’s fastest urbanising region (United Nations, Depart-
ment of Economic and Social Affairs, and Population Division, 2019). 

We developed and evaluated machine learning models to predict 
temporally and spatially varying noise and fine particulate matter 
(PM2.5; particles <2.5 μm in diameter, with known human health im-
pacts (Pope and Dockery, 2006)) levels from street-level images in 
Accra, Ghana. We used deep convolutional neural networks (CNNs), 
which learn robust and hierarchical feature representations that give 
them superior performance for many image-processing tasks (Schmid-
huber, 2015; Gu et al., 2018), in two complementary strategies. The first 
used a CNN, without a priori assumptions on the image features relevant 
for prediction, and another used gradient boosted machines, applied to 

interpretable image features in the form of object counts, from applying 
an object-detection CNN to each image. These models were applied to a 
bespoke dataset of over 1.6 million time-lapsed images co-located with 
PM2.5 and noise measurements, at 145 representative locations over 15 
months (Clark et al., 2020). Models were trained and evaluated on 
subsets of data specifically to interrogate their temporal and spatial 
generalisability and in order to compare and contrast strategies for data 
collection with fixed resources when developing such models. We 
further assessed model performance for both the day and night time, 
different seasons, and types of urban land use. 

2. Data and methodological context and contributions 

Some studies have predicted pollution from visual elements of the 
environment. Two studies, also from Accra, recorded PM2.5 and PM10 in 
selected neighbourhoods, in a multi-week measurement campaign 
(Dionisio et al., 2010; Rooney et al., 2012), together with researcher 
observations and census data on environmental factors, such as biomass 
fuels and unpaved roads, to predict pollution levels. Some studies have 
also predicted pollution using remote sensing data, which differs from 
our study, not only in the view of the city, but also in spatial and tem-
poral scales and the observable features in images (Sorek-Hamer et al., 
2022; Wei et al., 2020; Weigand et al., 2019). 

Other studies used terrestrial images for predicting air pollution 
(Chakma et al., 2017; Feng et al., 2021; Ganji et al., 2020; Gu et al., 
2019; Hong et al., 2020; Liu et al., 2016; Liu et al., 2015; Qi and Hankey, 
2021; Wang et al., 2022; Won et al., 2022; Zhang et al., 2018), and one 
for noise (Hong et al., 2020) based on images and pollution measure-
ment data though none had spatiotemporally linked image and pollution 
data during the night time, as we do. Previously adopted approaches 
span a variety of experimental configurations, making a unifying, 
quantitative comparison among studies infeasible. The specific metric of 
pollution (e.g., black carbon vs PM), timescales on which pollution is 
predicted (single measurement in time vs variation across day), spatial 
resolution (city-wide vs local), images used (static vs time-varying), data 
inputs (solely images vs inclusion of meteorological variables), temporal 
range (<~1 week vs multiple months of observation), synchrony be-
tween data sources (pollution and images <~5 min apart vs >~1 year 
apart), modelling approach (regression of continuous pollution data vs 
classification into different classes) and model inputs (specific features 
vs entire images), vary from study to study. Furthermore, within studies 
that used images as model inputs, a variety of features and feature 
extraction methods (object detection vs segmentation) were used, 
including in relation to stationarity of features in time (e.g., buildings 
and trees vs vehicles and pedestrians). The majority of studies used a 
single configuration from such choices depending on the available data, 
generating prediction tasks that are easier or more difficult relative to 
others. We outline the different experimental setups for previous studies 
in Appendix Table A. In the specific case of cities in Africa, one study 
used street-view images to predict PM2.5 and NO2 across several cities, 
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including Accra (Suel et al., 2022). Data used for model training were 
derived from modelled estimates of annual average pollution level with 
a model only evaluated, not trained, on data from Accra. 

Our work advances the state of knowledge in a number of ways. Our 
dataset is much larger and was collected over a longer duration than 
most previous image-based studies, comprising 145 locations and a total 
(prior to merging with our pollution data) of 2.1 million images over 15 
months. We co-captured both air pollution and noise data with images in 
both day and night time. We predicted air pollution concentrations and 
noise levels at finer classification intervals, i.e. with classes that each 
encompass a smaller and more precise range as described in Section 3.3, 
than comparable previous classification-based studies. We systemati-
cally evaluated both the spatial and temporal generalisability of models 
which is relevant for designing an optimal digital surveillance strategy 
and guiding data collection. Our study is unique in the use of both end- 
to-end CNN (outcome-driven) and object-based (feature-driven) models, 
which both inform model selection and enhance model interpretability. 
Finally, to our knowledge, this is the first use of images for predicting 
both air and noise pollution in the context of an African city. 

3. Materials and methods 

3.1. Data 

We collected co-located time-lapsed images at 5-min intervals and 
PM2.5 and noise measurements averaged and recorded at 1-min intervals 
in a field campaign from April 2019 to June 2020, details of which are 
described in Appendix A and the study protocol paper (Clark et al., 
2020). We had ten fixed sites where data were collected over 15 months, 
and 135 rotating sites where data was collected for one week. The fixed 
sites provided information for assessing temporal generalisability of 
models, and both fixed and rotating sites for assessing spatial general-
isability. Sites were grouped into four land-use classes: commercial, 
business, industrial (CBI); informal, mostly high-density, settlements 
and slums; formal, mostly low- and medium-density, residential areas; 
and “other” areas that are often peri-urban or rural, and can have dense 
vegetation (i.e., forest, grassland) or barren land (i.e., sand, soil, dirt). 
The classes for each fixed site are detailed in Appendix Table B. 

3.2. Research questions 

We developed two types of models that used images to predict noise 
and air pollution. We analysed how well our models’ prediction gener-
alise across time and space, through the following research questions: 

1a) Temporal generalisability: How well do models trained on im-
ages taken from a single location predict noise and PM2.5 at different, 
random times at the same location? 

1b) Spatial generalisability: How well do models trained in 1a), 
which are based on a single location, generalise to another unseen 
location? 

2a) Spatial generalisability: How well do models trained using an 
abundance (~1,000,000 total across sites) of images from a set of nine 
(long-term) fixed sites, predict noise and PM2.5 at the remaining (10th) 
unseen location? 

2b) Spatial generalisability: How well can models trained using 
fewer images (~100,000 total across sites) from ~90 % of our 135 
rotating sites, predict noise and PM2.5 at the remaining ~10 % of sites? 

The fixed sites, due to their extended data collection period, 
comprised seven times as much data as rotating sites in total. Since in- 
situ pollution measurements are resource intensive, especially in quan-
tities needed to train a CNN (Sun et al., 2017), there is a need to opti-
mally allocate the use of cameras and pollution measurement hardware, 
as well as personnel time. Therefore we also investigated whether 
models trained using more data from a smaller number of (fixed) sites, or 
fewer data from a greater number of (rotating) sites led to more spatially 
generalisable CNN models: 

2c) Comparison of model types from 2a) and 2b): Do models perform 
better on multiple, unseen locations (remaining ~10 % of rotating sites) 
when given an abundance of images from a few locations, or fewer 
images across a variety of locations? 

For each question, we divided our data into subsets for training and 
testing, as illustrated in Fig. 1. The number of images belonging to each 
of the datasets is given in Appendix Table B. 

Each panel shows how data from fixed and rotating sites were allo-
cated to training and testing sets, for each question posed in Section 3.2. 
For the training sets, indicated in blue, each block was further divided 
into a 75–25 split with the latter being used as a validation set during 
training configuration and hyperparameter determination. Final models 
were trained on the entire training set (including the validation set) and 
evaluated on the testing set, indicated in red. 

3.3. Modelling 

For all research questions, we trained models to predict levels of 
noise (dBA) or PM2.5 (μg/m3) at a given time (1-min averaged interval) 
and location from a single image taken within 30 s of pollution mea-
surement. We framed the prediction task as a classification problem, i.e. 
the models predict specific ranges (classes) in which noise and PM2.5 fall 
rather than as a continuous value, for two reasons. First, policy targets 
and guidelines, such as those of the World Health Organization (Basner 
and McGuire, 2018; World Health Organization, 2021), tend to be 
formulated based on discrete levels. Second, a preliminary analysis 
indicated that models trained explicitly for classification outperformed 
regression models trained for continuous value prediction, as detailed in 
Appendix C. The classes for noise were: ≤39, 40 to <45, 45 to <50, 50 to 
<55, 55 to <60, 60 to <65, 65 to <70, 70 to <75, 75 to <80, ≥ 80 dBA. 
The classes for PM2.5 were: 0 to <5, 5 to <10, 10 to <15, 15 to <20, 20 to 
<25, 25 to <30, 30 to <40, 40 to <50, 50 to <100, 100 to <150, ≥ 150 
μg/m3. 

For both forms of pollution, we produced two classification models 
(Fig. 2). The first, referred to as end-to-end classification, used an entire 
unprocessed image, with red, green and blue pixel channels, as input to a 
CNN to predict pollution class. No assumptions were made on relevant 
image features, which were learned from the data. The second group of 
models used counts of objects detected from images as input for classi-
fication via gradient boosted machines (Friedman, 2001) (GBM). Other 
approaches to feature extraction from images, such as semantic seg-
mentation, could also have been employed to provide model inputs for 
pollution estimation, as used in a North American study (Qi and Hankey, 
2021). We used objects in our second approach since the data needed to 
train a model, namely objects, were less resource intensive to generate 
within our bespoke dataset with bounding boxes (Nathvani et al., 2022) 
as compared with pixel-level annotation, which may also be explored in 
future work. The object counts were obtained from training an object 
detection CNN, described in detail in previous work (Nathvani et al., 
2022), for object categories relevant to the local environmental context: 
persons, market vendor (a person carrying a container over their heads 
which is a common scene in African markets), car, taxi, pick-up truck, 
bus, lorry, van, tro-tro (mini buses used for public transportation), 
motorcycle, bicycle, market stall, loudspeaker, umbrella (commonly 
used to protect market and roadside vendors from the sun and rain), 
cookstove, cooking pot/bowl (which frequently contain wares for sale in 
the marketplace), food, trash, (piece of) debris, and animal. All object 
categories are those which may vary over time at a given place, since 
although other static features, such as buildings or trees, may also affect 
noise and air pollution, their unchanging presence over daily timescales 
is less informative for predicting temporal variation in pollution at a 
single location (such as those models developed in 1a and 1b). The ac-
curacy with which these objects could be detected in our images is given 
in Appendix Table C and described in previous work (Nathvani et al., 
2022). In this analysis, we did not use counts of cookstove, loudspeakers, 
market vendors or buses, due to their sparse presence in our data (<10 
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counts of each in 2.1 million images). The end-to-end and feature-driven 
approaches are complementary with respect to flexibility and feature 
agnosticism versus prior assumption and interpretability (Zhang and 
Zhu, 2018). 

3.4. Data preparation 

We prepared our data in the following manner for the purpose of 
training and evaluating both CNN and object-GBM models. First, due to 
the Covid-19 pandemic and associated lockdown in Accra from March 
30th to April 20th 2020, we excluded images and pollution data from 
March 23rd to May 11th 2020, when we were unable to attend to the 
regular maintenance of monitoring hardware, and therefore data 
collection was incomplete and uneven across sites. 

A small number of cameras experienced internal failure of their 
clocks, resetting to a factory default of January 2017 at the start of their 
deployment, which led to images recorded with incorrect timestamps. 
We corrected the timestamps for these images by re-assigning the initial 
timestamp based on the start of the monitoring period, which was 
recorded on a log-sheet when visiting every site. Since each image 
thereafter was captured at regular five minute intervals, subsequent 
images were assigned time stamps at five minute intervals. Finally, a 
small fraction (<1 %) of images and pollution data were corrupted and 
hence unreadable by code. These data were excluded. 

Images and pollution data were combined by assigning each image 
the pollution observation nearest in time, with a requirement that the 

pollution value was recorded within +/− 30 s of image capture. Where 
two cameras were placed at a site, both images are assigned pollution 
data based on this procedure. Some images did not have corresponding 
pollution values due to a lack of measurements when monitors failed or 
were unstable. For noise, 83–98 % of fixed site images and 99 % of 
rotating site images were assigned pollution data. For PM2.5, 68–89 % of 
fixed site images and 79 % of rotating site images were assigned 
pollution data. Full details are provided in Appendix Fig. C. As 
mentioned in section 3.3 we applied a previously developed object 
detection CNN to all 2.1 million images in our unmerged data set to 
obtain information on the counts of different object categories within 
each image, which are used as numerical inputs for our GBM models. 
Examples of the detected objects within our images may be seen in 
Appendix Fig. D. 

1.6 million images were assigned corresponding PM2.5 values and 
1.9 million images with noise values. Each dataset was divided into 
training, validation and test sets, as shown in Fig. 1. The test set was 10 
% of all data. Training and validation sets (a 25 % holdout of the 
remainder of data) were used to train the model and set hyper-
parameters. After determining hyperparameters, the final models were 
trained on the combined training and validation sets and evaluated on 
the test set. Both CNN and GBM models used the exact same sets of 
images, with the former using the entire image and the latter the counts 
of objects in each image. 

Fig. 1. Data use for training and testing of models.  

Fig. 2. End-to-end (CNN) and object-based (GBM) modelling approaches.  
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3.5. Model training 

3.5.1. End-to-end CNN 
We used a Residual Network with 101 layers (ResNeXt 101) (Xie 

et al., 2017) as the convolutional neural network (CNN) architecture for 
classifying noise and PM2.5 levels from an entire image. The algorithm 
was implemented and trained in PyTorch (Paszke et al., 2019) and was 
pretrained on ImageNet data to enable the CNN to recognise low level 
features, e.g., edges, which improved model performance, as seen in 
other computer vision tasks (Huh et al., 2016). 

During training, CNNs were given images resized to 224 ⨉ 224 
pixels with layer depths of 3 to accommodate the Red, Green and Blue 
channels, with Z-score normalisation applied across all images to assist 
with the gradient descent process of learning (LeCun et al., 2012). A 
modified cross-entropy loss function with a log-barrier constraint (Bel-
harbi et al., 2020) was used to account for the ordinal nature of pollution 
classes, as described in Appendix B. Training was performed on two 
NVIDIA Quadro RTX 6000 GPUs (48GB memory), with models taking 
approximately 1 h per epoch and lasted for 30 epochs. The batch size 
was 32 images, using stochastic gradient descent with an initial learning 
rate of 0.001, a momentum of 0.9 and a step size of 40. Final models 
were those which performed best on the validation set during the 
training process, ranging from the 16–25th epoch. 

At training time, data augmentation was used to improve model 
generalisability and mitigate overfitting to the data (Shorten and 
Khoshgoftaar, 2019), by uniformly, randomly cropping the image bor-
ders, with the central 90 % area of the image always preserved, random 
rotations of the image between 10◦ anti-clockwise to 10◦ clockwise, and 
evenly random flipping of the image in the horizontal plane. These 
transformations correspond to the variance seen between camera images 
and the placement at different sites, which had different fields of view 
and camera orientations. 

3.5.2. Object-based gradient boosted machines 
We used gradient boosting machines or GBMs as the algorithm for 

classifying noise and PM2.5 from specific, interpretable features, which 
were counts of objects detected within each image from a separate CNN 
(Nathvani et al., 2022). GBMs are ensemble tree-based models which use 
“boosting”, i.e. adaptively changing the weights of data points in the 
training distribution during the learning process to improve perfor-
mance on less easily predicted data (Friedman, 2001), which were 
implemented XGBoost (Chen and Guestrin, 2016) in Python and Scikit- 
Learn (Pedregosa et al., 2011). GBMs have high efficacy across many 
problem domains with structured data inputs, due to their ability to 
learn non-linear relationships between features with robustness to out-
liers in a flexible and scalable manner (Chen and Guestrin, 2016). They 
offer advantages compared to linear models, which are more biased in 
complex data domains, and computationally expensive models such as 
support vector machines, and artificial neural networks which are 
typically more cumbersome to optimise. Furthermore, in a preliminary 
analysis, GBMs had better performance, as measured by classification 
accuracy, than comparable tree-based methods such as decision trees 
and random forests. 

The input to the GBM models were vectors representing the counts of 
different objects in each image, e.g., (cars: 2, people: 3, umbrellas: 0…). 
The model hyperparameters were determined with Bayesian optimisa-
tion, with the validation set being used for fixed sites’ data and with 3- 
fold cross validation when training on 9 folds of rotating site data 
(Fig. 1) and a cross-entropy loss function. The search range for the pa-
rameters is given in Appendix Table D. Training was performed during 
the Bayesian hyperparameter tuning process and was stopped when 5 
iterations of tuning yielded no further improvements in overall class 
prediction accuracy on the independent validation set. 

3.6. Model evaluation 

We compared the performance of both end-to-end and feature-driven 
approaches to infer plausible contributors to how they predict pollution. 
We calculated classification accuracy for exact class prediction as well as 
for when the model classified into the ground truth or adjacent class 
(shown as “same and ±1 class accuracy”). We evaluated all our models 
against a null model which measures whether the models do better than 
simply taking the average from a distribution of training data. We also 
calculated the models’ accuracy for specific subsets of data under 
different environmental conditions, including day and night time, and 
the dry and dusty Harmattan season (November–February). During the 
Harmattan season dust from the Saharan Desert is carried by trade winds 
(Adetunji et al., 1979), and there is haze and “redness”(Adetunji et al., 
1979; Anuforom, 2007; Ette and Olorode, 1988; McTainsh, 1980; Ochei 
and Adenola, 2018; Pinker et al., 1994), caused by absorption and 
scattering of light (Groblicki et al., 1981; Waggoner and Weiss, 1980) 
and the dust itself, which has a red-brown colour (Breuning-Madsen and 
Awadzi, 2005; Lafon et al., 2004). These changes in visibility can inform 
air pollution estimation (Hyslop, 2009; Ozkaynak et al., 1985). 

For GBM models in 1a, we quantified the importance of each object 
for prediction via its permutation importance, which calculates the 
reduction in the model’s accuracy on the test set, before and after 
randomly shuffling the values of an input feature (in our case, counts in a 
given object category) across images. Object counts in our data were 
correlated among different object categories across images (Nathvani 
et al., 2022), e.g., people and cars. Therefore a given object’s importance 
score might be lower when multiple objects are used for prediction than 
when single objects are used, because other correlated objects capture 
some of the same information. 

4. Results and discussion 

For noise, classification accuracy at different times in the same 
location (i.e. Question 1a) for both the end-to-end (CNN) and object- 
based (GBM) models ranged from 40 to 70 % across sites, consider-
ably outperforming their null models (Fig. 3). Accuracy increased to 
80–90 % for neighbouring (±1) class classification. The performance of 
the two models was similar, with CNNs slightly outperforming GBM 
models. Predictions at sites with high road-traffic, such as Asylum Down, 
Tema Motorway and N1 West Motorway, had higher accuracy than 
those at other sites. Noise predictions using CNN models were often 
more accurate in the daytime (59.9 % average classification accuracy 
across all sites) than night time (49.8 %) (Appendix Fig. E) which may 
result from predictive features such as people, traffic and marketplace 
indicators (e.g., umbrellas) being present, and more visible in the day, as 
in Appendix Fig. D, since street lighting conditions vary across our sites. 

PM2.5 classification had lower accuracy than that of noise in most 
model and site combinations (Fig. 3). There was also a larger discrep-
ancy between the predictive performance of CNN and GBM models for 
PM2.5, with CNN models achieving 30–55 % classification accuracy and 
GBM models 15–25 %, though both outperformed null model bench-
marks. Sites with higher classification accuracy for noise performed less 
well for air, and vice versa; for example, the three poorest performing 
sites for noise (University of Ghana, Ashaiman and East Legon) had the 
greatest accuracy for CNN models when predicting PM2.5. Accuracy of 
CNN models reached 70–90 % for neighbouring class classification, and 
that of GBM models 30–50 %. Unlike noise, performance of PM2.5 
classification using CNN models differed little between day (40.2 % 
average classification accuracy across all sites) and night time (39.6 %) 
and had higher accuracy during the Harmattan period (57.7 %) than in 
other times (35.1 %) (Appendix Fig. E), whereas GBM models had no 
consistent advantage during the Harmattan (17.5 %) than in other times 
(19.9 %). 

When trained at one fixed site and tested at a different fixed site 
(Question 1b), accuracy dropped compared with same-site testing and 
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CNN models for noise and PM2.5 performed similar to null model 
benchmarks, demonstrating the inability of models to generalise from 
the measurements at a single site (Fig. 4). For noise, the variation in 
accuracy of GBM models was greater than that of CNNs, but on average 
achieved greater improvement over null model benchmarks (+2.4 %) 
than did CNNs (+0.9 %). For PM2.5 accuracy ranged 7–20 % for both 
GBM and CNN models, with the latter achieving greater improvement 
over the null model benchmarks (+0.9 %) than did GBMs (+0.7 %). In 
all cases, accuracy and null model performance broadly increased with 
Bhattacharya coefficient, a measure of the similarity of pollution dis-
tributions between training and testing site (Bhattacharyya, 1943). 

Training on nine fixed sites with abundant (~1,000,000) data 
(Question 2a) produced similar results for generalising to a single, un-
seen fixed site as for models trained at single fixed sites (Appendix Fig. 
F). For noise, accuracies were at best 30–40 % for both CNN and GBM 
models, and in some instances similar to the null model; neither CNN nor 
GBM models had a distinct advantage. For PM2.5, both CNN and GBM 
model accuracy remained similar to null model performance. CNN and 
GBM models trained using fewer images (~100,000) from ~90 % of 
rotating sites (121–122 sites) for classifying noise and PM2.5 at the 
remaining rotating sites (Questions 2b) outperformed their respective 
null models (Fig. 5). As in temporal transferability (Question 1a), models 
performed better in classifying noise than PM2.5, but the advantage of 
CNN over GBM models disappeared. Noise models had 25 % accuracy 
for exact class and 65 % when allowing for neighbouring class classifi-
cation, with little variance (± 2.5 %) between folds, whilst PM2.5 models 
had 17.5 % accuracy, and 47.5 % allowing for neighbouring class clas-
sification. For noise, but not for PM2.5, CNN accuracy for daytime images 
was significantly higher than on night time images (Appendix Fig. G). 
CNN models had similar performance across all land use categories for 
both forms of pollution (Appendix Fig. G). 

When comparing the approaches in Questions 2a (fewer sites with 
more data per sites) and 2b (more sites with fewer data per sites) with 
consistent test data (Question 2c), models trained on a smaller amount 
of data from many (rotating) sites performed better than those trained 
on many times more data from a smaller number of (fixed) sites, for both 
noise and air pollution models (Appendix Fig. H). This suggests that with 
finite monitoring capacity, a diversity of locations for data gathering is 
more likely to produce spatial generalisability for pollution prediction 
using CNN models than long-term capture of data at fewer locations, 
highlighting the importance of optimising the spatial as well as temporal 
representativeness of data within cities for pollution modelling, as seen 
in other domains of computer vision (Schat et al., 2020). 

4.1. Object feature importance 

In GBM models developed in 1a, cars, people, taxis, umbrellas and 
tro-tros contributed most to predictions for both noise and PM2.5 
(Fig. 6). For PM2.5, debris and trucks also contributed to prediction ac-
curacy. These object categories were frequently detected in fixed site 
images. We calculated the Spearman correlation between object counts 
and noise and PM2.5 levels across images at each fixed site (Appendix 
Table E) in order to test whether this correlation explained an object’s 
permutation importance. The explained variance, calculated as the 
square of Pearson correlation between object-pollution correlations and 
the permutation importance for each object was 0.86 for noise and 0.76 
for PM2.5. Heuristically, the greater the correlation of an objects’ counts 
with that of pollution, the greater its contribution to model prediction 
accuracy, which may also indicate why noise models in 1a performed 
better than those for PM2.5. Since objects visible in the images had 
greater impact on the accuracy of noise prediction compared to PM2.5, 
CNN models for noise may have learned to rely on the same features as 
those used by the GBM models prediction. This may in turn explain the 
similar performance between the two models in 1a, which we further 
examine in the section below. 

As shown in Fig. 6, the objects with the highest permutation 
importance were various types of vehicles, consistent with previous 
research on the significant contributions from road traffic to both air and 
noise pollution (Dionisio et al., 2010; Onuu, 2000; Rooney et al., 2012). 
In addition, umbrellas were frequently present in images due to their 
extended use in the daytime to protect market vendors and their 
merchandise from the sun and rain. Markets also attract high levels of 
vehicular traffic (Agyapong and Ojo, 2018), people (Asante, 2020; 
Asante and Mills, 2020), and roadside cooking and food vending, which 
collectively increase noise and air pollution (Alli et al., 2021; Clark et al., 
2021). Furthermore, for PM2.5 models, debris had higher than average 
feature importance. Although not a source, debris is more visible and 
readily detected by our object detection algorithm during daylight 
hours, serving as a proxy for time of day, and for sites with diurnal 
patterns of PM2.5. In addition, debris may be more visible when unob-
scured by other objects, acting as an implicit indicator for a lack of 
crowds or traffic, and instances where the road surface, from which dust 
particles may be resuspended, is exposed. 

4.2. Harmattan influence 

To probe why CNN models in 1a performed better during the 
Harmattan season, when PM2.5 levels were much higher, we derived 
characteristics of images related to changes in hue and haze between 

Fig. 3. The classification accuracy achieved by CNN and GBM models trained and tested on images from the same fixed site (Question 1a) is shown for noise 
and PM2.5. 
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Harmattan and non-Harmattan periods, since previous work has 
demonstrated that changes due to Harmattan dust, such as an increase in 
“redness” and haze are indicators and predictive factors for pollution 
(Adetunji et al., 1979; Anuforom, 2007; Ette and Olorode, 1988; 
McTainsh, 1980; Ochei and Adenola, 2018; Pinker et al., 1994), as well 
as light scattering from dust (Groblicki et al., 1981; Waggoner and 
Weiss, 1980). Other approaches for predicting pollution from images 

have also used these features (Feng et al., 2021; Wang et al., 2022; Liu 
et al., 2015; Ganji et al., 2020) and we therefore created feature metrics 
which relate to qualities of hue and haze in our images in order to study 
our models. For daytime images, we compared mean pixel intensity in 
each colour channel between these periods: red, green and blue. For 
night time images in single-channel grayscale, we used mean pixel in-
tensity and pixel intensity standard deviation (SD). Red pixel intensity 

Fig. 4. The classification accuracy achieved by the CNN (left) and GBM (right) models trained and tested from images at one fixed site and tested at a different fixed 
site (Question 1b) for both noise (top) and PM2.5 (bottom) prediction. Points are coloured by the Bhattacharya coefficient between the pollution distributions be-
tween the training and testing sites, which is a measure of the overlap between the distributions. Data points with a star indicate testing and training performed at the 
same site, as in 1a. All null models are from the fixed site used for training. Below each scatterplot the relative improvements in classification accuracy over the null 
model accuracy is given for each data point (i.e. the vertical distance between the round points and the dashed diagonal line in the scatterplot); the purple dashed line 
shows the average across all data points, illustrating whether models achieved improvement over their benchmarks overall. 
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was greater during the Harmattan period, whilst the opposite was seen 
for blue (Appendix Fig. I). Furthermore, night time pixel intensity was 
higher at eight of ten sites during Harmattan, while pixel SD was lower 
at seven sites. To infer to what extent this information was used by our 
CNN models for PM2.5 classification, we calculated Spearman correla-
tions between mean red and blue pixel intensity and each image’s 
associated PM2.5 value (Appendix Table F). The average across sites was 
0.11 for red pixel intensity and − 0.21 for blue pixel intensity. Similarly, 
grayscale pixel intensity tended to be positively correlated with air 
pollution, 0.10, whilst grayscale pixel SD was negatively correlated, 
− 0.18, consistent with light sources appearing more diffuse in hazy 
conditions due to light scattering. The magnitude of these correlations 
was also greater during the Harmattan period, during which CNN 
models in 1a had greater accuracy (Appendix Table F). The Pearson 
correlation across all 10 sites between the aforementioned Spearman 
correlations for red pixel intensity and the accuracy of a CNN model at 
that site in 1a, was 0.73. In heuristic terms, the greater the 

correspondence between redness of image and air pollution, the better 
the model performed on average. 

4.3. Model interpretability across time and space 

Our results suggest that specific features, such as the objects selected 
for the GBM model, are better attuned at predicting noise, whilst pre-
dictive performance for PM2.5 is somewhat improved by leveraging 
more complex visual features from images such as red pixel channel 
intensity and haziness. This is supported by the discrepancy between day 
and night image accuracy for CNN models for noise in 1a and 2b, which 
may result from objects being more visible and present in the day than 
night, allowing CNN models to make more accurate predictions of noise, 
but not PM2.5, using daytime images. 

These observations also suggest that features learned by the CNN for 
noise classification are likely similar to the objects used by the GBM 
models, whilst being of less importance for CNN models for PM2.5. To 

Noise (dBA) PM2.5 (μg/m3)

Fig. 5. Classification accuracy achieved by CNN and GBM models trained and tested on images from rotating sites (Question 2b) for both noise and PM2.5 prediction. 
Accuracies are shown as the average over the folds of training data, as shown in Fig. 1. The bars show the standard deviation of the accuracy across different folds. 

Fig. 6. Permutation importance for each object used as inputs to the noise and PM2.5 GBM models in Question 1a, for each fixed site. Permutation importance is 
calculated on the test set for each model, as shown in Fig. 1. 
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investigate this, we generated a sample of gradient class activation maps 
(Selvaraju et al., 2017) (Grad-CAMs) for our CNN models in 1a. Grad- 
CAMs use gradient descent to work backwards from a network’s class 
prediction from a given image to the regions in the image itself which 
most contributed to that prediction. Fig. 7 shows that noise models focus 
either on visible objects or the location of main thoroughfares, whilst 
PM2.5 models tend to focus on either fixed features of the built envi-
ronment, or the sky, supporting the possibility of the object-driven na-
ture of noise models and the reliance of PM2.5 CNN models on complex 
visual features. This may be due to the fact that noise is transitory and 
spatially linked to sources or their proxies such as market stalls and their 
associated umbrellas. By contrast, PM2.5 persists at a location longer 
than its sources, and is composed of both local (e.g., traffic) and non- 
local (dust, neighbouring regions’ emissions) sources. 

5. Conclusions 

We used a unique dataset of co-located images and pollution mea-
surements, and two different modelling approaches, to investigate how 
images predict spatially and temporally resolved noise and air pollution 
measurements in a major city in Africa. Most models developed in this 
work surpassed null model accuracy baselines, indicating that models 
can learn information latent to images, beyond extrapolation from 
outcome data. Models had similar performance across different land-use 
categories within the city and across both day and night time, with a 
slight advantage to model accuracy in the daytime for noise. However, 
even when training and testing models at single sites, classifying noise 

and PM2.5 with either CNN or GBM models had moderate performance. 
No model surpassed 80 % classification accuracy, and performance was 
considerably lower when testing on previously unseen locations. This 
may be due to a combination of factors including the static nature of 
images, which may fail to capture transitory sources, e.g., emergency 
vehicle sirens, compared with exposures which are averaged over one 
minute’s observation. Furthermore some pollution sources (and pre-
dictors) are non-local or out of the field of view of the corresponding 
image’s camera. Since the models developed in questions 1b to 2c rely 
on a single images from consumer-grade digital cameras to predict 
pollution in an unseen location, our dataset and methodology also in-
forms on the viability of pollution modelling from comparable camera 
technology, including CCTV networks which are increasingly deployed 
in African cities and mobile phone camera capture, as has been used 
elsewhere in the literature. In addition, we intentionally tested models 
under the challenging condition of estimating pollution from a single 
image in time and space, in order to independently and conservatively 
assess the additional benefit images may confer above data extrapola-
tion. Future work could improve model accuracy by making use of CNN 
architectures with multiple image inputs across time, or in the case of 
feature-driven prediction, with object counts across a series of time- 
points prior to the moment in time whose pollution levels are esti-
mated. Similarly, image and/or object counts from neighbouring sites 
might also help predict pollution at a given location. These may prove 
especially beneficial for the prediction of PM2.5, whose presence is more 
persistent than many of its transitory sources, such as travelling cars. 

Where pollution sources are complex and vary widely across small 

Fig. 7. Grad-CAM visualisation heat maps for four fixed sites of different land-use categories, obtained from CNN models. The highlighted regions in each image 
(red) indicate the features most salient to the model’s prediction, for that image. The same image is shown as used by the corresponding noise and PM2.5 models, 
developed in Question 1a. 
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spatial scales, the inclusion of data from many sites improved the spatial 
generalisability of CNN models in comparison to an abundance of data 
from a small number of locations. Our results highlight the importance 
of optimising the spatial as well as temporal representativeness of data 
gathered within cities for pollution modelling, as seen in other domains 
of computer vision. Although spatially representative data improved 
model performance, for CNNs model accuracy also varied under 
particular times of day and seasons, related to time-varying environ-
mental factors. We also find that models are capable of making 
comparably accurate estimates for night time air and noise pollution, 
particularly for PM2.5 estimation, when such data is gathered and used 
for modelling, alongside corresponding images. This shows the need for 
temporally diverse, paired pollution and image data that capture urban 
environmental change on both short (<1h) and long (~1 year) 
timescales. 

Overall, our results show that inference of noise and PM2.5 from 
imagery is a feasible but challenging task, especially as the spatial and 
temporal scale of prediction becomes smaller, which is relevant for 
detailed policy formulation, such as dynamic smart congestion pricing, 
and evaluation of impacts on human exposure. Therefore, accurate and 
generalisable estimates of short timescale pollution in cities continues to 
require primary data collection at representative and diverse scales to 
support these efforts. 
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