582 research outputs found

    The robustness and restoration of a network of ecological networks

    Get PDF
    Understanding species' interactions and the robustness of interaction networks to species loss is essential to understand the effects of species' declines and extinctions. In most studies, different types of networks (such as food webs, parasitoid webs, seed dispersal networks, and pollination networks) have been studied separately. We sampled such multiple networks simultaneously in an agroecosystem. We show that the networks varied in their robustness; networks including pollinators appeared to be particularly fragile. We show that, overall, networks did not strongly covary in their robustness, which suggests that ecological restoration (for example, through agri-environment schemes) benefitting one functional group will not inevitably benefit others. Some individual plant species were disproportionately well linked to many other species. This type of information can be used in restoration management, because it identifies the plant taxa that can potentially lead to disproportionate gains in biodiversity

    Exaggerated displays do not improve mounting success in male seaweed flies Fucellia tergina (Diptera: Anthomyiidae).

    Get PDF
    Signals of individual quality are assumed to be difficult to exaggerate, either because they are directly linked to underlying traits (indices) or because they are costly to perform (handicaps). In practise advertisement displays may consist of conventional and costly components, for instance where a morphological structure related to body size is used in visual displays. In this case, there is the potential for dishonest displays, due to the population level variance around the relationship between body size and display structures. We examine the use of wing flicking displays that we observed in situ in a strandline dwelling seaweed fly Fucellia tergina, using overall body size and the size of their eyes as underlying indicators of condition. Males displayed far more frequently than females, and were also observed to frequently mount other flies, a behaviour that was rare in females. The rate of display was greater for males that had positive residual values from relationships between wing length and body length. In other words those males with larger than expected wings for their underlying quality displayed more frequently, indicating that these displays are open to exaggeration. Males with larger than expected wings (for the size of their body or eyes), however, mounted less frequently. We suggest that small bodied males are less successful in terms of mounting, but that those small males with relatively large wings may attempt to compensate for this through increased display effort

    Patterns of introduced species interactions affect multiple aspects of network structure in plant-pollinator communities

    Get PDF
    Species introductions have the potential to affect the functionality and stability of ecological communities, but because little is known about how introduced species form novel interactions, these impacts are difficult to predict. We quantified the impacts of species introductions on species interaction networks using five different model scenarios of how a novel species might form plant–pollinator interactions. The network structure was based on experimental manipulations on a community of plants and pollinators and shows that the community was more diverse, ordered, and compartmentalized, but less complex when an invasive plant generalist was present. Our models of species introductions reliably predicted several aspects of novel network structure in the field study. We found that introduced species that become incorporated into the community as generalists (both in the number and frequency of their interactions) have a much larger impact on the structure of plant–pollinator communities than introduced species that integrate into the community with few interactions. Average degree is strongly affected by the number of interactions the novel species forms and whether it competes for interactions, whereas connectance is affected by whether the novel species competes for interactions or adds new interaction partners. The number and size of compartments in the network change only when the novel species adds new interaction partners, while modularity and nestedness respond most to the number of interactions formed by the novel species. We provide a new approach for understanding the impacts of introduced and invasive species on plant–pollinator communities and demonstrate that it is critical to evaluate multiple structural characters simultaneously, as large changes in the fundamental structure of the community may be disguised

    Reshaping our understanding of species’ roles in landscape-scale networks

    Get PDF
    Data associate with Ecology Letters manuscript number: ELE-01021-2018.R2; Hackett et al. Reshaping our understanding of species’ roles in landscape-scale networks<div><br></div><div>See READ ME text file for specific detail</div

    Rates of species introduction to a remote oceanic island

    Get PDF
    The introduction of species to areas beyond the limits of their natural distributions has a major homogenizing influence, making previously distinct biotas more similar. The scale of introductions has frequently been commented on, but their rate and spatial pervasiveness have been less well quantified. Here, we report the findings of a detailed study of pterygote insect introductions to Gough Island, one of the most remote and supposedly pristine temperate oceanic islands, and estimate the rate at which introduced species have successfully established. Out of 99 species recorded from Gough Island, 71 are established introductions, the highest proportion documented for any Southern Ocean island. Estimating a total of approximately 233 landings on Gough Island since first human landfall, this equates to one successful establishment for every three to four landings. Generalizations drawn from other areas suggest that this may be only one-tenth of the number of pterygote species that have arrived at the island, implying that most landings may lead to the arrival of at least one alien. These rates of introduction of new species are estimated to be two to three orders of magnitude greater than background levels for Gough Island, an increase comparable to that estimated for global species extinctions (many of which occur on islands) as a consequence of human activities

    On working memory and a productivity illusion in distracted driving.

    Get PDF
    [EN]Drivers claim to use cell phones for benefits such as getting work done and to increase productivity (Sanbonmatsu, Strayer, Behrends, Medeiros-Ward, & Watson, in press). However, individuals who use cell phones while driving may be more likely to rely on reconstructive processes in memory due to divided attention, making them more susceptible to errors, yielding an ironic effect of multitasking that, in fact, may diminish productivity rather than increase it. To test this possibility, the present study included three within-subject conditions: single-task driving in a high-fidelity simulator, single-task memory including encoding and retrieval using the Deese–Roediger–McDermott false memory paradigm (Deese, 1959; Roediger & McDermott, 1995), and a dual-task combination of both the driving and memory tasks. The effects of divided attention in working memory were bidirectional, impairing both driving and episodic memory performance, likely due to competition for limited resources needed to successfully maintain task goals related to driving or memory alone. More specifically, under dual-task conditions, participants became increasingly reliant on reconstructive, error-prone processes in memory, with high levels of false recall. Taken together, these results indicate there is a productivity illusion associated with distracted driving in that individuals wrongly believe that combining cell phones with driving will make them more productive. Results are discussed in relation to theories of working memory and the domain-free ability to maintain task goals and to avoid distractions, whether this interference occurs in more traditional lab tasks or in more applied settings, highlighting the value of such converging evidence in sharpening theories of attention. (PsycInfo Database Record (c) 2022 APA, all rights reserved

    Revamp/Re-Rate Design Considerations

    Get PDF
    TutorialThis tutorial paper describes the mechanical and aerodynamic factors that must be considered when revamping, re-rating or upgrading a centrifugal compressor. The possible motivations for choosing to revamp existing turbomachinery rather than purchasing new equipment are also offered

    A Central Role for Foxp3+ Regulatory T Cells in K-Ras-Driven Lung Tumorigenesis

    Get PDF
    BACKGROUND: K-Ras mutations are characteristic of human lung adenocarcinomas and occur almost exclusively in smokers. In preclinical models, K-Ras mutations are necessary for tobacco carcinogen-driven lung tumorigenesis and are sufficient to cause lung adenocarcinomas in transgenic mice. Because these mutations confer resistance to commonly used cytotoxic chemotherapies and targeted agents, effective therapies that target K-Ras are needed. Inhibitors of mTOR such as rapamycin can prevent K-Ras-driven lung tumorigenesis and alter the proportion of cytotoxic and Foxp3+ regulatory T cells, suggesting that lung-associated T cells might be important for tumorigenesis. METHODS: Lung tumorigenesis was studied in three murine models that depend on mutant K-Ras; a tobacco carcinogen-driven model, a syngeneic inoculation model, and a transgenic model. Splenic and lung-associated T cells were studied using flow cytometry and immunohistochemistry. Foxp3+ cells were depleted using rapamycin, an antibody, or genetic ablation. RESULTS: Exposure of A/J mice to a tobacco carcinogen tripled lung-associated Foxp3+ cells prior to tumor development. At clinically relevant concentrations, rapamycin prevented this induction and reduced lung tumors by 90%. In A/J mice inoculated with lung adenocarcinoma cells resistant to rapamycin, antibody-mediated depletion of Foxp3+ cells reduced lung tumorigenesis by 80%. Likewise, mutant K-Ras transgenic mice lacking Foxp3+ cells developed 75% fewer lung tumors than littermates with Foxp3+ cells. CONCLUSIONS: Foxp3+ regulatory T cells are required for K-Ras-mediated lung tumorigenesis in mice. These studies support clinical testing of rapamycin or other agents that target Treg in K-Ras driven human lung cancer
    corecore