632 research outputs found

    Inference in complex biological systems with Gaussian processes and parallel tempering

    Get PDF
    Parameter inference in mathematical models of complex biological systems, expressed as coupled ordinary differential equations (ODEs), is a challenging problem. These depend on kinetic parameters, which cannot all be measured and have to be ascertained a different way. However, the computational costs associated with repeatedly solving the ODEs are often staggering, making many techniques impractical. Therefore, aimed at reducing this cost, new concepts using gradient matching have been proposed. This paper combines current adaptive gradient matching approaches, using Gaussian processes, with a parallel tempering scheme, in order to compare 2 different paradigms using the same nonlinear regression method. We use 2 ODE systems to assess our technique, showing an improvement over the recent method in Calderhead et al. (2008)

    Heterogeneous continuous dynamic Bayesian networks with flexible structure and inter-time segment information sharing

    Get PDF
    Classical dynamic Bayesian networks (DBNs) are based on the homogeneous Markov assumption and cannot deal with heterogeneity and non-stationarity in temporal processes. Various approaches to relax the homogeneity assumption have recently been proposed. The present paper aims to improve the shortcomings of three recent versions of heterogeneous DBNs along the following lines: (i) avoiding the need for data discretization, (ii) increasing the flexibility over a time-invariant network structure, (iii) avoiding over-flexibility and overfitting by introducing a regularization scheme based in inter-time segment information sharing. The improved method is evaluated on synthetic data and compared with alternative published methods on gene expression time series from Drosophila melanogaster. 1

    Dynamic Bayesian networks in molecular plant science: inferring gene regulatory networks from multiple gene expression time series

    Get PDF
    To understand the processes of growth and biomass production in plants, we ultimately need to elucidate the structure of the underlying regulatory networks at the molecular level. The advent of high-throughput postgenomic technologies has spurred substantial interest in reverse engineering these networks from data, and several techniques from machine learning and multivariate statistics have recently been proposed. The present article discusses the problem of inferring gene regulatory networks from gene expression time series, and we focus our exposition on the methodology of Bayesian networks. We describe dynamic Bayesian networks and explain their advantages over other statistical methods. We introduce a novel information sharing scheme, which allows us to infer gene regulatory networks from multiple sources of gene expression data more accurately. We illustrate and test this method on a set of synthetic data, using three different measures to quantify the network reconstruction accuracy. The main application of our method is related to the problem of circadian regulation in plants, where we aim to reconstruct the regulatory networks of nine circadian genes in Arabidopsis thaliana from four gene expression time series obtained under different experimental conditions

    ODE parameter inference using adaptive gradient matching with Gaussian processes

    Get PDF
    Parameter inference in mechanistic models based on systems of coupled differential equa- tions is a topical yet computationally chal- lenging problem, due to the need to fol- low each parameter adaptation with a nu- merical integration of the differential equa- tions. Techniques based on gradient match- ing, which aim to minimize the discrepancy between the slope of a data interpolant and the derivatives predicted from the differen- tial equations, offer a computationally ap- pealing shortcut to the inference problem. The present paper discusses a method based on nonparametric Bayesian statistics with Gaussian processes due to Calderhead et al. (2008), and shows how inference in this model can be substantially improved by consistently inferring all parameters from the joint dis- tribution. We demonstrate the efficiency of our adaptive gradient matching technique on three benchmark systems, and perform a de- tailed comparison with the method in Calder- head et al. (2008) and the explicit ODE inte- gration approach, both in terms of parameter inference accuracy and in terms of computa- tional efficiency

    Parameter inference in mechanistic models of cellular regulation and signalling pathways using gradient matching

    Get PDF
    A challenging problem in systems biology is parameter inference in mechanistic models of signalling pathways. In the present article, we investigate an approach based on gradient matching and nonparametric Bayesian modelling with Gaussian processes. We evaluate the method on two biological systems, related to the regulation of PIF4/5 in Arabidopsis thaliana, and the JAK/STAT signal transduction pathway

    Machine learning approach to reconstructing signalling pathways and interaction networks in biology

    Get PDF
    In this doctoral thesis, I present my research into applying machine learning techniques for reconstructing species interaction networks in ecology, reconstructing molecular signalling pathways and gene regulatory networks in systems biology, and inferring parameters in ordinary differential equation (ODE) models of signalling pathways. Together, the methods I have developed for these applications demonstrate the usefulness of machine learning for reconstructing networks and inferring network parameters from data. The thesis consists of three parts. The first part is a detailed comparison of applying static Bayesian networks, relevance vector machines, and linear regression with L1 regularisation (LASSO) to the problem of reconstructing species interaction networks from species absence/presence data in ecology (Faisal et al., 2010). I describe how I generated data from a stochastic population model to test the different methods and how the simulation study led us to introduce spatial autocorrelation as an important covariate. I also show how we used the results of the simulation study to apply the methods to presence/absence data of bird species from the European Bird Atlas. The second part of the thesis describes a time-varying, non-homogeneous dynamic Bayesian network model for reconstructing signalling pathways and gene regulatory networks, based on L`ebre et al. (2010). I show how my work has extended this model to incorporate different types of hierarchical Bayesian information sharing priors and different coupling strategies among nodes in the network. The introduction of these priors reduces the inference uncertainty by putting a penalty on the number of structure changes among network segments separated by inferred changepoints (Dondelinger et al., 2010; Husmeier et al., 2010; Dondelinger et al., 2012b). Using both synthetic and real data, I demonstrate that using information sharing priors leads to a better reconstruction accuracy of the underlying gene regulatory networks, and I compare the different priors and coupling strategies. I show the results of applying the model to gene expression datasets from Drosophila melanogaster and Arabidopsis thaliana, as well as to a synthetic biology gene expression dataset from Saccharomyces cerevisiae. In each case, the underlying network is time-varying; for Drosophila melanogaster, as a consequence of measuring gene expression during different developmental stages; for Arabidopsis thaliana, as a consequence of measuring gene expression for circadian clock genes under different conditions; and for the synthetic biology dataset, as a consequence of changing the growth environment. I show that in addition to inferring sensible network structures, the model also successfully predicts the locations of changepoints. The third and final part of this thesis is concerned with parameter inference in ODE models of biological systems. This problem is of interest to systems biology researchers, as kinetic reaction parameters can often not be measured, or can only be estimated imprecisely from experimental data. Due to the cost of numerically solving the ODE system after each parameter adaptation, this is a computationally challenging problem. Gradient matching techniques circumvent this problem by directly fitting the derivatives of the ODE to the slope of an interpolant. I present an inference procedure for a model using nonparametric Bayesian statistics with Gaussian processes, based on Calderhead et al. (2008). I show that the new inference procedure improves on the original formulation in Calderhead et al. (2008) and I present the result of applying it to ODE models of predator-prey interactions, a circadian clock gene, a signal transduction pathway, and the JAK/STAT pathway

    Poly-ubiquitination in TNFR1-mediated necroptosis

    Get PDF
    Tumor necrosis factor (TNF) is a master pro-inflammatory cytokine, and inappropriate TNF signaling is implicated in the pathology of many inflammatory diseases. Ligation of TNF to its receptor TNFR1 induces the transient formation of a primary membrane-bound signaling complex, known as complex I, that drives expression of pro-survival genes. Defective complex I activation results in induction of cell death, in the form of apoptosis or necroptosis. This switch occurs via internalization of complex I components and assembly and activation of secondary cytoplasmic death complexes, respectively known as complex II and necrosome. In this review, we discuss the crucial regulatory functions of ubiquitination-a post-translational protein modification consisting of the covalent attachment of ubiquitin, and multiples thereof, to target proteins-to the various steps of TNFR1 signaling leading to necroptosis
    corecore