96 research outputs found

    Development and Synthetic Applications of Anion Relay Chemistry Tactics — Design, Synthesis and Validation of Small-Molecule Mimics of the Immune Cell Receptor Cd4

    Get PDF
    This thesis comprises two independent Parts. Part I describes the implementation of Anion Relay Chemistry (ARC) tactics in the synthesis of natural products and natural product precursor scaffolds. Chapter 1 discusses the design and execution of a unified strategy exploiting ARC Type I and Type II four- component fragment unions for the synthesis of natural products of the Cryptocarya family. The ARC tactics play here a pivotal role in generating, in a single flask, structurally elaborate synthetic intermediates from relatively simple, readily accessible starting materials, leading to increased efficiencies in the construction of the chosen synthetic targets compared to previous reports. Chapter 2, in turn, describes the validation of a Type II ARC protocol permitting the stereocontrolled introduction of a propionate unit in tricomponent adducts via a new aldehyde “linchpin,” followed by an application in the construction of a putative C16-C29 segment of natural product rhizopodin. Part II describes the synthesis and structure-based optimization of small-molecule mimics of CD4, a receptor that mediates infection of immune cells by Human v Immunodeficiency Virus (HIV). Chapter 1 describes the development of a synthetic route for the stereoselective, scalable preparation of compound JP-III-048, a small-molecule CD4 mimic that had exhibited promising activity in HIV entry inhibition assays. Structural modifications guided by crystallographic and computational data ultimately leading to both more potent and more broadly active analogues are discussed in Chapter 2. Extensive studies by our collaborators have led to the discovery that these small molecules have the capability of sensitizing both viral particles and infected cells to neutralization by the immune system. These findings are discussed in Chapter 3

    Cryo-EM Structures of HIV-1 trimer bound to CD4-mimetics M48U1 and BNM-III-170 adopt a CD4-bound open conformation

    Get PDF
    Human Immunodeficiency Virus-1 (HIV-1), the causative agent of AIDS, impacts millions of people. Entry into target cells is mediated by the HIV-1 envelope (Env) glycoprotein interacting with host receptor CD4, which triggers conformational changes allowing binding to a coreceptor and subsequent membrane fusion. Small molecule or peptide CD4-mimetic drugs mimic CD4’s Phe43 interaction with Env by inserting into the conserved Phe43 pocket on Env subunit gp120. Here, we present single-particle cryo-EM structures of CD4-mimetics BNM-III-170 and M48U1 bound to a BG505 native-like Env trimer plus the CD4-induced antibody 17b at 3.7Å and 3.9Å resolution, respectively. CD4-mimetic-bound BG505 exhibits canonical CD4-induced conformational changes including trimer opening, formation of the 4-stranded gp120 bridging sheet, displacement of the V1V2 loop, and formation of a compact and elongated gp41 HR1C helical bundle. We conclude that CD4-induced structural changes on both gp120 and gp41 Env subunits are induced by binding to the gp120 Phe43 pocket

    The effects of CO2, climate and land-use on terrestrial carbon balance, 1920-1992: An analysis with four process-based ecosystem models

    Get PDF
    The concurrent effects of increasing atmospheric CO2 concentration, climate variability, and cropland establishment and abandonment on terrestrial carbon storage between 1920 and 1992 were assessed using a standard simulation protocol with four process-based terrestrial biosphere models. Over the long-term(1920–1992), the simulations yielded a time history of terrestrial uptake that is consistent (within the uncertainty) with a long-term analysis based on ice core and atmospheric CO2 data. Up to 1958, three of four analyses indicated a net release of carbon from terrestrial ecosystems to the atmosphere caused by cropland establishment. After 1958, all analyses indicate a net uptake of carbon by terrestrial ecosystems, primarily because of the physiological effects of rapidly rising atmospheric CO2. During the 1980s the simulations indicate that terrestrial ecosystems stored between 0.3 and 1.5 Pg C yr−1, which is within the uncertainty of analysis based on CO2 and O2 budgets. Three of the four models indicated (in accordance with O2 evidence) that the tropics were approximately neutral while a net sink existed in ecosystems north of the tropics. Although all of the models agree that the long-term effect of climate on carbon storage has been small relative to the effects of increasing atmospheric CO2 and land use, the models disagree as to whether climate variability and change in the twentieth century has promoted carbon storage or release. Simulated interannual variability from 1958 generally reproduced the El Niño/Southern Oscillation (ENSO)-scale variability in the atmospheric CO2 increase, but there were substantial differences in the magnitude of interannual variability simulated by the models. The analysis of the ability of the models to simulate the changing amplitude of the seasonal cycle of atmospheric CO2 suggested that the observed trend may be a consequence of CO2 effects, climate variability, land use changes, or a combination of these effects. The next steps for improving the process-based simulation of historical terrestrial carbon include (1) the transfer of insight gained from stand-level process studies to improve the sensitivity of simulated carbon storage responses to changes in CO2 and climate, (2) improvements in the data sets used to drive the models so that they incorporate the timing, extent, and types of major disturbances, (3) the enhancement of the models so that they consider major crop types and management schemes, (4) development of data sets that identify the spatial extent of major crop types and management schemes through time, and (5) the consideration of the effects of anthropogenic nitrogen deposition. The evaluation of the performance of the models in the context of a more complete consideration of the factors influencing historical terrestrial carbon dynamics is important for reducing uncertainties in representing the role of terrestrial ecosystems in future projections of the Earth system

    Determinants of fatal outcome in patients admitted to intensive care units with influenza, European Union 2009–2017

    Get PDF
    Free PMC article: https://www.ncbi.nlm.nih.gov/pmc/articles/pmid/32258201/Background: Morbidity, severity, and mortality associated with annual influenza epidemics are of public health concern. We analyzed surveillance data on hospitalized laboratory-confirmed influenza cases admitted to intensive care units to identify common determinants for fatal outcome and inform and target public health prevention strategies, including risk communication. Methods: We performed a descriptive analysis and used Poisson regression models with robust variance to estimate the association of age, sex, virus (sub)type, and underlying medical condition with fatal outcome using European Union data from 2009 to 2017. Results: Of 13 368 cases included in the basic dataset, 2806 (21%) were fatal. Age ≥40 years and infection with influenza A virus were associated with fatal outcome. Of 5886 cases with known underlying medical conditions and virus A subtype included in a more detailed analysis, 1349 (23%) were fatal. Influenza virus A(H1N1)pdm09 or A(H3N2) infection, age ≥60 years, cancer, human immunodeficiency virus infection and/or other immune deficiency, and heart, kidney, and liver disease were associated with fatal outcome; the risk of death was lower for patients with chronic lung disease and for pregnant women. Conclusions: This study re-emphasises the importance of preventing influenza in the elderly and tailoring strategies to risk groups with underlying medical conditions.info:eu-repo/semantics/publishedVersio

    Prostaglandin E2 Prevents Hyperosmolar-Induced Human Mast Cell Activation through Prostanoid Receptors EP2 and EP4

    Get PDF
    Background: Mast cells play a critical role in allergic and inflammatory diseases, including exercise-induced bronchoconstriction (EIB) in asthma. The mechanism underlying EIB is probably related to increased airway fluid osmolarity that activates mast cells to the release inflammatory mediators. These mediators then act on bronchial smooth muscle to cause bronchoconstriction. In parallel, protective substances such as prostaglandin E2 (PGE2) are probably also released and could explain the refractory period observed in patients with EIB. Objective: This study aimed to evaluate the protective effect of PGE2 on osmotically activated mast cells, as a model of exercise-induced bronchoconstriction. Methods: We used LAD2, HMC-1, CD34-positive, and human lung mast cell lines. Cells underwent a mannitol challenge, and the effects of PGE2 and prostanoid receptor (EP) antagonists for EP1-4 were assayed on the activated mast cells. Beta-hexosaminidase release, protein phosphorylation, and calcium mobilization were assessed. Results: Mannitol both induced mast cell degranulation and activated phosphatidyl inositide 3-kinase and mitogen-activated protein kinase (MAPK) pathways, thereby causing de novo eicosanoid and cytokine synthesis. The addition of PGE2 significantly reduced mannitol-induced degranulation through EP2 and EP4 receptors, as measured by beta-hexosaminidase release, and consequently calcium influx. Extracellular-signal-regulated kinase 1/2, c-Jun N-terminal kinase, and p38 phosphorylation were diminished when compared with mannitol activation alone. Conclusions:Our data show a protective role for the PGE2 receptors EP2 and EP4 following osmotic changes, through the reduction of human mast cell activity caused by calcium influx impairment and MAP kinase inhibition

    A Unified Synthetic Strategy to the Cryptocarya Family of Natural Products Exploiting Anion Relay Chemistry (ARC)

    No full text
    A unified synthetic strategy to the Cryptocarya family of natural products has been achieved employing four-component fragment unions in a “single flask” exploiting Anion Relay Chemistry (ARC). Functionalization of the ARC adducts permits rapid construction of five polyhydroxylated di- and tetrahydropyrone natural products of the Cryptocarya class (<b>1</b>–<b>5</b>), in a total of 7–9 steps from commercially available materials

    Pathway infiammatorio del Sistema del Complemento nelle ascidie: sequenziamento e caratterizzazione funzionale del recettore dell’anafilatossina C3a di Ciona intestinalis

    No full text
    Dottorato di Ricerca in Biologia Animale, XIX Ciclo,a.a.2005-2006In mammals, the bioactive fragment C3a, released from C3 during complement activation, is a potent mediator of inflammatory reactions and exerts its functional activity through the specific binding to cell surface G protein-coupled seven-transmembrane receptors. Recently, a C3a-mediated chemotaxis of hemocytes has been demonstrated in the deuterostome invertebrate Ciona intestinalis and an important role for this molecule in inflammatory processes has been suggested. In this study, we have cloned and characterized the CiC3aR molecule involved in the CiC3a-mediated chemotaxis and studied its expression profile. The sequence of CiC3aR, encoding a 95,394 Da seventransmembrane domain protein, shows the highest sequence homology with mammalian C3aRs. Northern blot analysis revealed that the CiC3aR is expressed abundantly in the heart and neural complex and to a lesser extent, in the ovaries, hemocytes, and larvae. Three polyclonal antibodies raised against peptides corresponding to CiC3aR regions of the first and second extracellular loop and of the third intracellular loop, react specifically in Western blotting with a single band of 98-102 kDa in hemocyte protein extracts. Immunostaining performed on circulating hemocytes with the three specific antibodies revealed that CiC3aR is constitutively expressed only in hyaline and granular amoebocytes. In chemotaxis experiments, the antibodies against the first and second extracellular loop inhibited directional migration of hemocytes toward the synthetic peptide reproducing the CiC3a C-terminal sequence, thus providing the compelling evidence that C. intestinalis.expresses a functional C3aR homologous to the mammalian receptor. These findings further elucidate the evolutionary origin of the vertebrate complement-mediated proinflammatory processUniversità della Calabri
    corecore