281 research outputs found

    Trends in Medicinal Chemistry: KNIME Workflows, QSAR Models, LLMs and Chemical Search Strategies

    Get PDF
    Through a lens encompassing KNIME workflows, QSAR models, LLMs, and chemical substructure search strategies, the article navigates the essential considerations driving innovation and progress in industrial cheminformatics for medicinal chemistry and drug discovery

    Videolaryngoscopy in the Intensive Care Unit: We could Improve ICU Patients Safety

    Get PDF
    Tracheal intubation is one of the most common and dangerous procedures in the intensive care units (ICU), and is usually done in more difficult conditions than in the operating room. Intubation failure can occur unexpectedly, and is the second most common event reflected in the ICU in the NAP4. Complications associated with airways were more likely to occur in ICU than in the operating room (severe hypoxemia, arrhythmia, hypotension, cardiovascular collapse, etc.), and generates more frequent damage to the patient. The theoretical benefits of videolaryngoscopes, as proper and correct use, offer the potential to reduce the difficulty of intubation in the ICU. In recent years, the role of videolaryngoscopes in ICU has been the subject of debate. Numerous studies have shown increased morbidity when performing multiple attempts at tracheal intubation. Videolaryngoscopes allow a view of the entrance of glottis independent of the line of sight, and have also been shown to improve glottis and intubation success rates in emergency and emergency services, in the prehospital setting, and specifically in patients with known predictors of difficult airway (DA)

    The extra virgin olive oil phenolic oleacein is a dual substrate-inhibitor of catechol-O-methyltransferase

    Get PDF
    Catechol-containing polyphenols present in coffee and tea, while serving as excellent substrates for catechol-Omethyltransferase (COMT)-catalyzed O-methylation, can also operate as COMT inhibitors. However, little is known about the relationship between COMT and the characteristic phenolics present in extra virgin olive oil (EVOO). We here selected the EVOO dihydroxy-phenol oleacein for a computational study of COMT-driven methylation using classic molecular docking/molecular dynamics simulations and hybrid quantum mechanical/ molecular mechanics, which were supported by in vitro activity studies using human COMT. Oleacein could be superimposed onto the catechol-binding site of COMT, maintaining the interactions with the atomic positions involved in methyl transfer from the S-adenosyl-L-methionine cofactor. The transition state structure for the meta-methylation in the O5 position of the oleacein benzenediol moiety was predicted to occur preferentially. Enzyme analysis of the conversion ratio of catechol to O-alkylated guaiacol confirmed the inhibitory effect of oleacein on human COMT, which remained unaltered when tested against the protein version encoded by the functional Val158Met polymorphism of the COMT gene. Our study provides a theoretical determination of how EVOO dihydroxy-phenols can be metabolized via COMT. The ability of oleacein to inhibit COMT adds a new dimension to the physiological and therapeutic utility of EVOO secoiridoids

    Extra Virgin Olive Oil Contains a Phenolic Inhibitor of the Histone Demethylase LSD1/KDM1A

    Get PDF
    The lysine-specific histone demethylase 1A (LSD1) also known as lysine (K)-specific demethylase 1A (KDM1A) is a central epigenetic regulator of metabolic reprogramming in obesity-associated diseases, neurological disorders, and cancer. Here, we evaluated the ability of oleacein, a biophenol secoiridoid naturally present in extra virgin olive oil (EVOO), to target LSD1. Molecular docking and dynamic simulation approaches revealed that oleacein could target the binding site of the LSD1 cofactor flavin adenosine dinucleotide with high affinity and at low concentrations. At higher concentrations, oleacein was predicted to target the interaction of LSD1 with histone H3 and the LSD1 co-repressor (RCOR1/CoREST), likely disturbing the anchorage of LSD1 to chromatin. AlphaScreen-based in vitro assays confirmed the ability of oleacein to act as a direct inhibitor of recombinant LSD1, with an IC50 as low as 2.5 umol/L. Further, oleacein fully suppressed the expression of the transcription factor SOX2 (SEX determining Region Y-box 2) in cancer stem-like and induced pluripotent stem (iPS) cells, which specifically occurs under the control of an LSD1-targeted distal enhancer. Conversely, oleacein failed to modify ectopic SOX2 overexpression driven by a constitutive promoter. Overall, our findings provide the first evidence that EVOO contains a naturally occurring phenolic inhibitor of LSD1, and support the use of oleacein as a template to design new secoiridoid-based LSD1 inhibitors.Work in the Menendez laboratory is supported by the Spanish Ministry of Science and Innovation (Grant SAF2016-80639-P, Plan Nacional de l+D+I, founded by the European Regional Development Fund, Spain) and by an unrestricted research grant from the Fundació Oncolliga Girona (Lliga catalana d’ajuda al malalt de càncer, Girona). The Spanish Ministry of Economy and Competitiveness (MINECO, Project RTI2018-096724-B-C21) and the Generalitat Valenciana (PROMETEO/2016/006) supports work in the Encinar laborator

    Surgical treatment for colorectal cancer: Analysis of the influence of an enhanced recovery programme on long-term oncological outcomes-a study protocol for a prospective, multicentre, observational cohort study

    Get PDF
    Introduction The evidence currently available from enhanced recovery after surgery (ERAS) programmes concerns their benefits in the immediate postoperative period, but there is still very little evidence as to whether their correct implementation benefits patients in the long term. The working hypothesis here is that, due to the lower response to surgical aggression and lower rates of postoperative complications, ERAS protocols can reduce colorectal cancer-related mortality. The main objective of this study is to analyse the impact of an ERAS programme for colorectal cancer on 5-year survival. As secondary objectives, we propose to analyse the weight of each of the predefined items in the oncological results as well as the quality of life. Methods and analysis A multicentre prospective cohort study was conducted in patients older than 18 years of age who are scheduled to undergo surgery for colorectal cancer. The study involved 12 hospitals with an implemented enhanced recovery protocol according to the guidelines published by the Spanish National Health Service. The intervention group includes patients with a minimum implementation level of 70%, and the control group includes those who fail to reach this level. Compliance will be studied using 18 key performance indicators, and the results will be analysed using cancer survival indicators, including overall survival, cancer-specific survival and relapse-free survival. The time to recurrence, perioperative morbidity and mortality, hospital stay and quality of life will also be studied, the latter using the validated EuroQol Five questionnaire. The propensity index method will be used to create comparable treatment and control groups, and a multivariate regression will be used to study each variable. The Kaplan-Meier estimator will be used to estimate survival and the log-rank test to make comparisons. A p value of less than 0.05 (two-tailed) will be considered to be significant. Ethics and dissemination Ethical approval for this study was obtained from the Aragon Ethical Committee (C.P.-C.I. PI20/086) on 4 March 2020. The findings of this study will be submitted to peer-reviewed journals (BMJ Open, JAMA Surgery, Annals of Surgery, British Journal of Surgery). Abstracts will be submitted to relevant national and international meetings. Trial registration number NCT04305314

    Surgical treatment for colorectal cancer: Analysis of the influence of an enhanced recovery programme on long-term oncological outcomes-a study protocol for a prospective, multicentre, observational cohort study

    Full text link
    Introduction The evidence currently available from enhanced recovery after surgery (ERAS) programmes concerns their benefits in the immediate postoperative period, but there is still very little evidence as to whether their correct implementation benefits patients in the long term. The working hypothesis here is that, due to the lower response to surgical aggression and lower rates of postoperative complications, ERAS protocols can reduce colorectal cancer-related mortality. The main objective of this study is to analyse the impact of an ERAS programme for colorectal cancer on 5-year survival. As secondary objectives, we propose to analyse the weight of each of the predefined items in the oncological results as well as the quality of life. Methods and analysis A multicentre prospective cohort study was conducted in patients older than 18 years of age who are scheduled to undergo surgery for colorectal cancer. The study involved 12 hospitals with an implemented enhanced recovery protocol according to the guidelines published by the Spanish National Health Service. The intervention group includes patients with a minimum implementation level of 70%, and the control group includes those who fail to reach this level. Compliance will be studied using 18 key performance indicators, and the results will be analysed using cancer survival indicators, including overall survival, cancer-specific survival and relapse-free survival. The time to recurrence, perioperative morbidity and mortality, hospital stay and quality of life will also be studied, the latter using the validated EuroQol Five questionnaire. The propensity index method will be used to create comparable treatment and control groups, and a multivariate regression will be used to study each variable. The Kaplan-Meier estimator will be used to estimate survival and the log-rank test to make comparisons. A p value of less than 0.05 (two-tailed) will be considered to be significant. Ethics and dissemination Ethical approval for this study was obtained from the Aragon Ethical Committee (C.P.-C.I. PI20/086) on 4 March 2020. The findings of this study will be submitted to peer-reviewed journals (BMJ Open, JAMA Surgery, Annals of Surgery, British Journal of Surgery). Abstracts will be submitted to relevant national and international meetings.The present research study was awarded a Ministerio de Ciencia e InnovaciĂłn health research project grant (PI19/00291) from the Carlos III Institute of the Spanish National Health Service as part of the 2019 call for Strategic Action in Health

    Metformin Is a Direct SIRT1-Activating Compound: Computational Modeling and Experimental Validation

    Get PDF
    Metformin has been proposed to operate as an agonist of SIRT1, a nicotinamide adenine dinucleotide (NAD+)-dependent deacetylase that mimics most of the metabolic responses to calorie restriction. Herein, we present an in silico analysis focusing on the molecular docking and dynamic simulation of the putative interactions between metformin and SIRT1. Using eight different crystal structures of human SIRT1 protein, our computational approach was able to delineate the putative binding modes of metformin to several pockets inside and outside the central deacetylase catalytic domain. First, metformin was predicted to interact with the very same allosteric site occupied by resveratrol and other sirtuin-activating compounds (STATCs) at the amino-terminal activation domain of SIRT1. Second, metformin was predicted to interact with the NAD+ binding site in a manner slightly different to that of SIRT1 inhibitors containing an indole ring. Third, metformin was predicted to interact with the C-terminal regulatory segment of SIRT1 bound to the NAD+ hydrolysis product ADP-ribose, a “C-pocket”-related mechanism that appears to be essential for mechanism-based activation of SIRT1. Enzymatic assays confirmed that the net biochemical effect of metformin and other biguanides such as a phenformin was to improve the catalytic efficiency of SIRT1 operating in conditions of low NAD+ in vitro. Forthcoming studies should confirm the mechanistic relevance of our computational insights into how the putative binding modes of metformin to SIRT1 could explain its ability to operate as a direct SIRT1-activating compound. These findings might have important implications for understanding how metformin might confer health benefits via maintenance of SIRT1 activity during the aging process when NAD+ levels decline

    Extra-virgin olive oil contains a metabolo-epigenetic inhibitor of cancer stem cells

    Get PDF
    We are grateful to Custodio Borrego for giving us free use of the photograph he took of EVOO and olive trees in Granada (Spain), which have been included in Figure 7. This work has been awarded with the IV Premio Internacional Castillo de Canena de InvestigaciĂłn OleĂ­cola ‘LUIS VAÑÓ’(IV Edition of Castillo de Canena LUIS VAÑÓ Award for Research on Olive Cultivation and Olive Oil; UC Davis Olive Center, Castillo de Canena, and Universidad de JaĂ©n).The authors would like to thank Dr Kenneth McCreath for editorial support. We are greatly indebted to Prof Robert A. Weinberg (Whitehead Institute for Biomedical Research, Cambridge, MA) for providing the HMLERshCntrol/HMLERshEcad cells used in this work.Targeting tumor-initiating, drug-resistant populations of cancer stem cells (CSC) with phytochemicals is a novel paradigm for cancer prevention and treatment. We herein employed a phenotypic drug discovery approach coupled to mechanism-of-action profiling and target deconvolution to identify phenolic components of extra virgin olive oil (EVOO) capable of suppressing the functional traits of CSC in breast cancer (BC). In vitro screening revealed that the secoiridoid decarboxymethyl oleuropein aglycone (DOA) could selectively target subpopulations of epithelial-like, aldehyde dehydrogenase (ALDH)-positive and mesenchymal-like, CD44+CD24−/low CSC. DOA could potently block the formation of multicellular tumorspheres generated from single-founder stem-like cells in a panel of genetically diverse BC models. Pretreatment of BC populations with noncytotoxic doses of DOA dramatically reduced subsequent tumor-forming capacity in vivo. Mice orthotopically injected with CSC-enriched BC-cell populations pretreated with DOA remained tumor-free for several months. Phenotype microarray-based screening pointed to a synergistic interaction of DOA with the mTOR inhibitor rapamycin and the DNA methyltransferase (DNMT) inhibitor 5-azacytidine. In silico computational studies indicated that DOA binds and inhibits the ATP-binding kinase domain site of mTOR and the S-adenosyl-l-methionine (SAM) cofactorbinding pocket of DNMTs. FRET-based Z-LYTEℱ and AlphaScreen-based in vitro assays confirmed the ability of DOA to function as an ATP-competitive mTOR inhibitor and to block the SAM-dependent methylation activity of DNMTs. Our systematic in vitro, in vivo and in silico approaches establish the phenol-conjugated oleoside DOA as a dual mTOR/DNMT inhibitor naturally occurring in EVOO that functionally suppresses CSC-like states responsible for maintaining tumorinitiating cell properties within BC populations.This work was supported by grants from the Ministerio de Ciencia e InnovaciĂłn (Grant SAF2016-80639-P to J.A.M.), Plan Nacional de I+D+I, Spain, the AgĂšncia de GestiĂł d’Ajuts Universitaris i de Recerca (AGAUR; Grant 2014 SGR229 to J.A.M.), Departament d’Economia i Coneixement, Catalonia, Spain, the Andalusian Regional Government Council of Innovation and Science (Grant P11-CTS-7625 to A.S.-C.), the Ministerio de EconomĂ­a, Industria y Competitividad, Spain (Grants AGL2015- 67995-C2-3-R and AGL2015-67995-C3-1-R to A.S.-C. and V.M.) and Conselleria d’EducaciĂł, InvestigaciĂł, Cultura I Esport, Generalitat Valenciana, Spain (Grant PROMETEO/2016/006 to V.M). E.C. is supported by the Sara Borrell post doctoral contract (CD15/00033) from the Ministerio de Sanidad y Consumo, Fondo de InvestigaciĂłn Sanitaria (FIS), Spain

    Prediction of preterm delivery in symptomatic women using PAMG‐1, fetal fibronectin and phIGFBP‐1 tests: systematic review and meta‐analysis

    Get PDF
    Objective To assess the accuracy of placental alpha microglobulin‐1 (PAMG‐1), fetal fibronectin (fFN) and phosphorylated insulin‐like growth factor‐binding protein‐1 (phIGFBP‐1) tests in predicting spontaneous preterm birth (sPTB) within 7 days of testing in women with symptoms of preterm labor, through a systematic review and meta‐analysis of the literature. The test performance of each biomarker was also assessed according to pretest probability of sPTB ≀ 7 days. Methods The Cochrane, MEDLINE, PubMed and ResearchGate bibliographic databases were searched from inception until October 2017. Cohort studies that reported on the predictive accuracy of PAMG‐1, fFN and phIGFBP‐1 for the prediction of sPTB within 7 days of testing in women with symptoms of preterm labor were included. Summary receiver–operating characteristics (ROC) curves and sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) and positive (LR+) and negative (LR–) likelihood ratios were generated using indirect methods for the calculation of pooled effect sizes with a bivariate linear mixed model for the logit of sensitivity and specificity, with each diagnostic test as a covariate, as described by the Cochrane Handbook for Systematic Reviews of Diagnostic Test Accuracy. Results Bivariate mixed model pooled sensitivity of PAMG‐1, fFN and phIGFBP‐1 for the prediction of sPTB ≀ 7 days was 76% (95% CI, 57–89%), 58% (95% CI, 47–68%) and 93% (95% CI, 88–96%), respectively; pooled specificity was 97% (95% CI, 95–98%), 84% (95% CI, 81–87%) and 76% (95% CI, 70–80%) respectively; pooled PPV was 76.3% (95% CI, 69–84%) (P < 0.05), 34.1% (95% CI, 29–39%) and 35.2% (95% CI, 31–40%), respectively; pooled NPV was 96.6% (95% CI, 94–99%), 93.3% (95% CI, 92–95%) and 98.7% (95% CI, 98–99%), respectively; pooled LR+ was 22.51 (95% CI, 15.09–33.60) (P < 0.05), 3.63 (95% CI, 2.93–4.50) and 3.80 (95% CI, 3.11–4.66), respectively; and pooled LR– was 0.24 (95% CI, 0.12–0.48) (P < 0.05), 0.50 (95% CI, 0.39–0.64) and 0.09 (95% CI, 0.05–0.16), respectively. The areas under the ROC curves for PAMG‐1, fFN and phIGFBP‐1 for sPTB ≀ 7 days were 0.961, 0.874 and 0.801, respectively. Conclusions In the prediction of sPTB within 7 days of testing in women with signs and symptoms of PTL, the PPV of PAMG‐1 was significantly higher than that of phIGFBP‐1 or fFN. Other diagnostic accuracy measures did not differ between the three biomarker tests. As prevalence affects the predictive performance of a diagnostic test, use of a highly specific assay for a lower‐prevalence syndrome such as sPTB may optimize management

    The Power Board of the KM3NeT Digital Optical Module: design, upgrade, and production

    Full text link
    The KM3NeT Collaboration is building an underwater neutrino observatory at the bottom of the Mediterranean Sea consisting of two neutrino telescopes, both composed of a three-dimensional array of light detectors, known as digital optical modules. Each digital optical module contains a set of 31 three inch photomultiplier tubes distributed over the surface of a 0.44 m diameter pressure-resistant glass sphere. The module includes also calibration instruments and electronics for power, readout and data acquisition. The power board was developed to supply power to all the elements of the digital optical module. The design of the power board began in 2013, and several prototypes were produced and tested. After an exhaustive validation process in various laboratories within the KM3NeT Collaboration, a mass production batch began, resulting in the construction of over 1200 power boards so far. These boards were integrated in the digital optical modules that have already been produced and deployed, 828 until October 2023. In 2017, an upgrade of the power board, to increase reliability and efficiency, was initiated. After the validation of a pre-production series, a production batch of 800 upgraded boards is currently underway. This paper describes the design, architecture, upgrade, validation, and production of the power board, including the reliability studies and tests conducted to ensure the safe operation at the bottom of the Mediterranean Sea throughout the observatory's lifespa
    • 

    corecore