95 research outputs found

    Reply

    Get PDF

    Reply

    Get PDF

    Screening for brain aneurysm in the Familial Intracranial Aneurysm study: frequency and predictors of lesion detection

    Get PDF
    Object Approximately 20% of patients with an intracranial saccular aneurysm report a family history of intracranial aneurysm (IA) or subarachnoid hemorrhage. A better understanding of predictors of aneurysm detection in familial IA may allow more targeted aneurysm screening strategies. Methods The Familial Intracranial Aneurysm (FIA) study is a multicenter study, in which the primary objective is to define the susceptibility genes related to the formation of IA. First-degree relatives (FDRs) of those affected with IA are offered screening with magnetic resonance (MR) angiography if they were previously unaffected, are ≥ 30 years of age, and have a history of smoking and/or hypertension. Independent predictors of aneurysm detection on MR angiography were determined using the generalized estimating equation version of logistic regression. Results Among the first 303 patients screened with MR angiography, 58 (19.1%) had at least 1 IA, including 24% of women and 11.7% of men. Ten (17.2%) of 58 affected patients had multiple aneurysms. Independent predictors of aneurysm detection included female sex (odds ratio [OR] 2.46, p = 0.001), pack-years of cigarette smoking (OR 3.24 for 20 pack-years of cigarette smoking compared with never having smoked, p < 0.001), and duration of hypertension (OR 1.26 comparing those with 10 years of hypertension to those with no hypertension, p = 0.006). Conclusions In the FIA study, among the affected patients’ FDRs who are > 30 years of age, those who are women or who have a history of smoking or hypertension are at increased risk of suffering an IA and should be strongly considered for screening

    Mechanisms of oxygenation responses to proning and recruitment in COVID-19 pneumonia

    Get PDF
    Purpose This study aimed at investigating the mechanisms underlying the oxygenation response to proning and recruitment maneuvers in coronavirus disease 2019 (COVID-19) pneumonia. Methods Twenty-five patients with COVID-19 pneumonia, at variable times since admission (from 1 to 3 weeks), underwent computed tomography (CT) lung scans, gas-exchange and lung-mechanics measurement in supine and prone positions at 5 cmH(2)O and during recruiting maneuver (supine, 35 cmH(2)O). Within the non-aerated tissue, we differentiated the atelectatic and consolidated tissue (recruitable and non-recruitable at 35 cmH(2)O of airway pressure). Positive/negative response to proning/recruitment was defined as increase/decrease of PaO2/FiO(2). Apparent perfusion ratio was computed as venous admixture/non aerated tissue fraction. Results The average values of venous admixture and PaO2/FiO(2) ratio were similar in supine-5 and prone-5. However, the PaO2/FiO(2) changes (increasing in 65% of the patients and decreasing in 35%, from supine to prone) correlated with the balance between resolution of dorsal atelectasis and formation of ventral atelectasis (p = 0.002). Dorsal consolidated tissue determined this balance, being inversely related with dorsal recruitment (p = 0.012). From supine-5 to supine-35, the apparent perfusion ratio increased from 1.38 +/- 0.71 to 2.15 +/- 1.15 (p = 0.004) while PaO2/FiO(2) ratio increased in 52% and decreased in 48% of patients. Non-responders had consolidated tissue fraction of 0.27 +/- 0.1 vs. 0.18 +/- 0.1 in the responding cohort (p = 0.04). Consolidated tissue, PaCO2 and respiratory system elastance were higher in patients assessed late (all p < 0.05), suggesting, all together, "fibrotic-like" changes of the lung over time. Conclusion The amount of consolidated tissue was higher in patients assessed during the third week and determined the oxygenation responses following pronation and recruitment maneuvers

    The Familial Intracranial Aneurysm (FIA) study protocol

    Get PDF
    BACKGROUND: Subarachnoid hemorrhage (SAH) due to ruptured intracranial aneurysms (IAs) occurs in about 20,000 people per year in the U.S. annually and nearly half of the affected persons are dead within the first 30 days. Survivors of ruptured IAs are often left with substantial disability. Thus, primary prevention of aneurysm formation and rupture is of paramount importance. Prior studies indicate that genetic factors are important in the formation and rupture of IAs. The long-term goal of the Familial Intracranial Aneurysm (FIA) Study is to identify genes that underlie the development and rupture of intracranial aneurysms (IA). METHODS/DESIGN: The FIA Study includes 26 clinical centers which have extensive experience in the clinical management and imaging of intracerebral aneurysms. 475 families with affected sib pairs or with multiple affected relatives will be enrolled through retrospective and prospective screening of potential subjects with an IA. After giving informed consent, the proband or their spokesperson invites other family members to participate. Each participant is interviewed using a standardized questionnaire which covers medical history, social history and demographic information. In addition blood is drawn from each participant for DNA isolation and immortalization of lymphocytes. High- risk family members without a previously diagnosed IA undergo magnetic resonance angiography (MRA) to identify asymptomatic unruptured aneurysms. A 10 cM genome screen will be performed to identify FIA susceptibility loci. Due to the significant mortality of affected individuals, novel approaches are employed to reconstruct the genotype of critical deceased individuals. These include the intensive recruitment of the spouse and children of deceased, affected individuals. DISCUSSION: A successful, adequately-powered genetic linkage study of IA is challenging given the very high, early mortality of ruptured IA. Design features in the FIA Study that address this challenge include recruitment at a large number of highly active clinical centers, comprehensive screening and recruitment techniques, non-invasive vascular imaging of high-risk subjects, genome reconstruction of dead affected individuals using marker data from closely related family members, and inclusion of environmental covariates in the statistical analysis

    Understanding 'non-genetic' inheritance : insights from molecular-evolutionary crosstalk

    Get PDF
    The idea for this paper was initially proposed by I.A.-K. and was further developed by all authors in a workshop generously funded by grant No 789240 from the European Research Council (ERC) to F.J.W. S.E.S. acknowledges support from Wesleyan University and The John Templeton Foundation.Understanding the evolutionary and ecological roles of 'non-genetic' inheritance (NGI) is daunting due to the complexity and diversity of epigenetic mechanisms. We draw on insights from molecular and evolutionary biology perspectives to identify three general features of 'non-genetic' inheritance systems: (i) they are functionally interdependent with, rather than separate from, DNA sequence; (ii) precise mechanisms vary phylogenetically and operationally; and (iii) epigenetic elements are probabilistic, interactive regulatory factors and not deterministic 'epialleles' with defined genomic locations and effects. We discuss each of these features and offer recommendations for future empirical and theoretical research that implements a unifying inherited gene regulation (IGR) approach to studies of 'non-genetic' inheritance.Publisher PDFPeer reviewe

    A multi-model CMIP6-PMIP4 study of Arctic sea ice at 127 ka: sea ice data compilation and model differences

    Get PDF
    The Last Interglacial period (LIG) is a period with increased summer insolation at high northern latitudes, which results in strong changes in the terrestrial and marine cryosphere. Understanding the mechanisms for this response via climate modelling and comparing the models' representation of climate reconstructions is one of the objectives set up by the Paleoclimate Modelling Intercomparison Project for its contribution to the sixth phase of the Coupled Model Intercomparison Project. Here we analyse the results from 16 climate models in terms of Arctic sea ice. The multi-model mean reduction in minimum sea ice area from the pre industrial period (PI) to the LIG reaches 50 % (multi-model mean LIG area is 3.20×106 km2, compared to 6.46×106 km2 for the PI). On the other hand, there is little change for the maximum sea ice area (which is 15–16×106 km2 for both the PI and the LIG. To evaluate the model results we synthesise LIG sea ice data from marine cores collected in the Arctic Ocean, Nordic Seas and northern North Atlantic. The reconstructions for the northern North Atlantic show year-round ice-free conditions, and most models yield results in agreement with these reconstructions. Model–data disagreement appear for the sites in the Nordic Seas close to Greenland and at the edge of the Arctic Ocean. The northernmost site with good chronology, for which a sea ice concentration larger than 75 % is reconstructed even in summer, discriminates those models which simulate too little sea ice. However, the remaining models appear to simulate too much sea ice over the two sites south of the northernmost one, for which the reconstructed sea ice cover is seasonal. Hence models either underestimate or overestimate sea ice cover for the LIG, and their bias does not appear to be related to their bias for the pre-industrial period. Drivers for the inter-model differences are different phasing of the up and down short-wave anomalies over the Arctic Ocean, which are associated with differences in model albedo; possible cloud property differences, in terms of optical depth; and LIG ocean circulation changes which occur for some, but not all, LIG simulations. Finally, we note that inter-comparisons between the LIG simulations and simulations for future climate with moderate (1 % yr−1) CO2 increase show a relationship between LIG sea ice and sea ice simulated under CO2 increase around the years of doubling CO2. The LIG may therefore yield insight into likely 21st century Arctic sea ice changes using these LIG simulations

    World Congress Integrative Medicine & Health 2017: Part one

    Get PDF

    Reply

    No full text
    • …
    corecore