154 research outputs found
Searching for galaxy clusters in the VST-KiDS Survey
We present the methods and first results of the search for galaxy clusters in
the Kilo Degree Survey (KiDS). The adopted algorithm and the criterium for
selecting the member galaxies are illustrated. Here we report the preliminary
results obtained over a small area (7 sq. degrees), and the comparison of our
cluster candidates with those found in the RedMapper and SZ Planck catalogues;
the analysis to a larger area (148 sq. degrees) is currently in progress. By
the KiDS cluster search, we expect to increase the completeness of the clusters
catalogue to z = 0.6-0.7 compared to RedMapper.Comment: 5 pages, 4 figures, to be published in the Proceedings of the
Conference "The Universe of Digital Sky Surveys", Naples, November 25-28 201
Redshift-space correlation functions in large galaxy cluster surveys
Large ongoing and upcoming galaxy cluster surveys in the optical, X-ray and
millimetric wavelengths will provide rich samples of galaxy clusters at
unprecedented depths. One key observable for constraining cosmological models
is the correlation function of these objects, measured through their
spectroscopic redshift. We study the redshift-space correlation functions of
clusters of galaxies, averaged over finite redshift intervals, and their
covariance matrices. Expanding as usual the angular anisotropy of the
redshift-space correlation on Legendre polynomials, we consider the
redshift-space distortions of the monopole as well as the next two multipoles,
and 4. Taking into account the Kaiser effect, we developed an
analytical formalism to obtain explicit expressions of all contributions to
these mean correlations and covariance matrices. We include shot-noise and
sample-variance effects as well as Gaussian and non-Gaussian contributions. We
obtain a reasonable agreement with numerical simulations for the mean
correlations and covariance matrices on large scales (Mpc).
Redshift-space distortions amplify the monopole correlation by about ,
depending on the halo mass, but the signal-to-noise ratio remains of the same
order as for the real-space correlation. This distortion will be significant
for surveys such as DES, Erosita, and Euclid, which should also measure the
quadrupole . The third multipole, , may only be marginally
detected by Euclid.Comment: 20 page
The cosmological analysis of X-ray cluster surveys: I- A new method for interpreting number counts
We present a new method aiming to simplify the cosmological analysis of X-ray
cluster surveys. It is based on purely instrumental observable quantities,
considered in a two-dimensional X-ray colour-magnitude diagram (hardness ratio
versus count-rate). The basic principle is that, even in rather shallow
surveys, substantial information on cluster redshift and temperature is present
in the raw X-ray data and can be statistically extracted; in parallel, such
diagrams can be readily predicted from an ab initio cosmological modeling. We
illustrate the methodology for the case of a 100 deg2 XMM survey having a
sensitivity of ~10^{-14} ergs/s/cm^2 and fit at the same time, the survey
selection function, the cluster evolutionary scaling-relations and the
cosmology; our sole assumption -- driven by the limited size of the sample
considered in the case-study -- is that the local cluster scaling relations are
known. We devote special care to the realistic modeling of the count-rate
measurement uncertainties and evaluate the potential of the method via a Fisher
analysis. In the absence of individual cluster redshifts, the CR-HR method
appears to be much more efficient than the traditional approach based on
cluster counts (i.e. dn/dz, requiring redshifts). In the case where redshifts
are available, our method performs similarly as the traditional mass function
(dn/dM/dz) for the purely cosmological parameters, but better constrains
parameters defining the cluster scaling relations and their evolution. A
further practical advantage of the CR-HR method is its simplicity : this fully
top-down approach totally bypasses the tedious steps consisting in deriving
cluster masses from X-ray temperature measurements.Comment: 18 pages, 15 figures, 3 tables. Accepted for publication in MNRAS
(minor changes with respect to previous version
Climate-Biogeochemistry Interactions in the Tropical Ocean: Data collection and legacy
From 2008 through 2019, a comprehensive research project, SFB 754, Climate - Biogeochemistry Interactions in the Tropical Ocean, was funded by the German Research Foundation to investigate the climate-biogeochemistry interactions in the tropical ocean with a particular emphasis on the processes determining the oxygen distribution. During three 4-year long funding phases, a consortium of more than 150 scientists conducted or participated in 34 major research cruises and collected a wealth of physical, biological, chemical, and meteorological data. A common data policy agreed upon at the initiation of the project provided the basis for the open publication of all data. Here we provide an inventory of this unique data set and briefly summarize the various data acquisition and processing methods used
The XMM cluster survey: Testing chameleon gravity using the profiles of clusters
The chameleon gravity model postulates the existence of a scalar field that couples with matter to mediate a fifth force. If it exists, this fifth force would influence the hot X-ray emitting gas filling the potential wells of galaxy clusters. However, it would not influence the clusters weak lensing signal. Therefore, by comparing X-ray and weak lensing profiles, one can place upper limits on the strength of a fifth force. This technique has been attempted before using a single, nearby cluster (Coma, z = 0.02). Here we apply the technique to the stacked profiles of 58 clusters at higher redshifts (0.1 R0| R0| on cosmological scales. We hope to improve this constraint in future by extending the study to hundreds of clusters using data from the Dark Energy Survey
ZFOURGE/CANDELS: On the Evolution of \u3cem\u3eM\u3c/em\u3e* Galaxy Progenitors from \u3cem\u3ez\u3c/em\u3e=3 to 0.5*
Galaxies with stellar masses near M* contain the majority of stellar mass in the universe, and are therefore of special interest in the study of galaxy evolution. The Milky Way (MW) and Andromeda (M31) have present-day stellar masses near M*, at 5 × 1010 M ☉ (defined here to be MW-mass) and 1011 M ☉ (defined to be M31-mass). We study the typical progenitors of these galaxies using the FOURSTAR Galaxy Evolution Survey (ZFOURGE). ZFOURGE is a deep medium-band near-IR imaging survey, which is sensitive to the progenitors of these galaxies out to z ~ 3. We use abundance-matching techniques to identify the main progenitors of these galaxies at higher redshifts. We measure the evolution in the stellar mass, rest-frame colors, morphologies, far-IR luminosities, and star formation rates, combining our deep multiwavelength imaging with near-IR Hubble Space Telescope imaging from Cosmic Near-IR Deep Extragalactic Legacy Survey (CANDELS), and Spitzer and Herschel far-IR imaging from Great Observatories Origins Deep Survey-Herschel and CANDELS-Herschel. The typical MW-mass and M31-mass progenitors passed through the same evolution stages, evolving from blue, star-forming disk galaxies at the earliest stages to redder dust-obscured IR-luminous galaxies in intermediate stages and to red, more quiescent galaxies at their latest stages. The progenitors of the MW-mass galaxies reached each evolutionary stage at later times (lower redshifts) and with stellar masses that are a factor of two to three lower than the progenitors of the M31-mass galaxies. The process driving this evolution, including the suppression of star formation in present-day M* galaxies, requires an evolving stellar-mass/halo-mass ratio and/or evolving halo-mass threshold for quiescent galaxies. The effective size and SFRs imply that the baryonic cold-gas fractions drop as galaxies evolve from high redshift to z ~ 0 and are strongly anticorrelated with an increase in the Sérsic index. Therefore, the growth of galaxy bulges in M* galaxies corresponds to a rapid decline in the galaxy gas fractions and/or a decrease in the star formation efficiency
Multi-level engineering facilitates the production of phenylpropanoid compounds in tomato
Phenylpropanoids comprise an important class of plant secondary metabolites. A number of transcription factors have been used to upregulate-specific branches of phenylpropanoid metabolism, but by far the most effective has been the fruit-specific expression of AtMYB12 in tomato, which resulted in as much as 10% of fruit dry weight accumulating as flavonols and hydroxycinnamates. We show that AtMYB12 not only increases the demand of flavonoid biosynthesis but also increases the supply of carbon from primary metabolism, energy and reducing power, which may fuel the shikimate and phenylalanine biosynthetic pathways to supply more aromatic amino acids for secondary metabolism. AtMYB12 directly binds promoters of genes encoding enzymes of primary metabolism. The enhanced supply of precursors, energy and reducing power achieved by AtMYB12 expression can be harnessed to engineer high levels of novel phenylpropanoids in tomato fruit, offering an effective production system for bioactives and other high value ingredients
Stone formation in peach fruit exhibits spatial coordination of the lignin and flavonoid pathways and similarity to Arabidopsis dehiscence
<p>Abstract</p> <p>Background</p> <p>Lignification of the fruit endocarp layer occurs in many angiosperms and plays a critical role in seed protection and dispersal. This process has been extensively studied with relationship to pod shatter or dehiscence in <it>Arabidopsis</it>. Dehiscence is controlled by a set of transcription factors that define the fruit tissue layers and whether or not they lignify. In contrast, relatively little is known about similar processes in other plants such as stone fruits which contain an extremely hard lignified endocarp or stone surrounding a single seed.</p> <p>Results</p> <p>Here we show that lignin deposition in peach initiates near the blossom end within the endocarp layer and proceeds in a distinct spatial-temporal pattern. Microarray studies using a developmental series from young fruits identified a sharp and transient induction of phenylpropanoid, lignin and flavonoid pathway genes concurrent with lignification and subsequent stone hardening. Quantitative polymerase chain reaction studies revealed that specific phenylpropanoid (phenylalanine ammonia-lyase and cinnamate 4-hydroxylase) and lignin (caffeoyl-CoA O-methyltransferase, peroxidase and laccase) pathway genes were induced in the endocarp layer over a 10 day time period, while two lignin genes (<it>p-</it>coumarate 3-hydroxylase and cinnamoyl CoA reductase) were co-regulated with flavonoid pathway genes (chalcone synthase, dihydroflavanol 4-reductase, leucoanthocyanidin dioxygen-ase and flavanone-3-hydrosylase) which were mesocarp and exocarp specific. Analysis of other fruit development expression studies revealed that flavonoid pathway induction is conserved in the related Rosaceae species apple while lignin pathway induction is not. The transcription factor expression of peach genes homologous to known endocarp determinant genes in <it>Arabidopsis </it>including <it>SHATTERPROOF</it>, <it>SEEDSTCK </it>and <it>NAC SECONDARY WALL THICENING PROMOTING FACTOR 1 </it>were found to be specifically expressed in the endocarp while the negative regulator <it>FRUITFU</it>L predominated in exocarp and mesocarp.</p> <p>Conclusions</p> <p>Collectively, the data suggests, first, that the process of endocarp determination and differentiation in peach and <it>Arabidopsis </it>share common regulators and, secondly, reveals a previously unknown coordination of competing lignin and flavonoid biosynthetic pathways during early fruit development.</p
Fruit-Surface Flavonoid Accumulation in Tomato Is Controlled by a SlMYB12-Regulated Transcriptional Network
The cuticle covering plants' aerial surfaces is a unique structure that plays a key role in organ development and protection against diverse stress conditions. A detailed analysis of the tomato colorless-peel y mutant was carried out in the framework of studying the outer surface of reproductive organs. The y mutant peel lacks the yellow flavonoid pigment naringenin chalcone, which has been suggested to influence the characteristics and function of the cuticular layer. Large-scale metabolic and transcript profiling revealed broad effects on both primary and secondary metabolism, related mostly to the biosynthesis of phenylpropanoids, particularly flavonoids. These were not restricted to the fruit or to a specific stage of its development and indicated that the y mutant phenotype is due to a mutation in a regulatory gene. Indeed, expression analyses specified three R2R3-MYB–type transcription factors that were significantly down-regulated in the y mutant fruit peel. One of these, SlMYB12, was mapped to the genomic region on tomato chromosome 1 previously shown to harbor the y mutation. Identification of an additional mutant allele that co-segregates with the colorless-peel trait, specific down-regulation of SlMYB12 and rescue of the y phenotype by overexpression of SlMYB12 on the mutant background, confirmed that a lesion in this regulator underlies the y phenotype. Hence, this work provides novel insight to the study of fleshy fruit cuticular structure and paves the way for the elucidation of the regulatory network that controls flavonoid accumulation in tomato fruit cuticle
The FourStar Galaxy Evolution Survey (ZFOURGE): Ultraviolet to Far-infrared Catalogs, Medium-bandwidth Photometric Redshifts with Improved Accuracy, Stellar Masses, and Confirmation of Quiescent Galaxies to z ~3.5
Interstellar matter and star formatio
- …