26 research outputs found

    Cross-Reactivity of Virus-Specific CD8+ T Cells Against Allogeneic HLA-C: Possible Implications for Pregnancy Outcome

    Get PDF
    Heterologous immunity of virus-specific T cells poses a potential barrier to transplantation tolerance. Cross-reactivity to HLA-A and -B molecules has broadly been described, whereas responses to allo-HLA-C have remained ill defined. In contrast to the transplant setting, HLA-C is the only polymorphic HLA molecule expressed by extravillous trophoblasts at the maternal-fetal interface during pregnancy. Uncontrolled placental viral infections, accompanied by a pro-inflammatory milieu, can alter the activation status and stability of effector T cells. Potential cross-reactivity of maternal decidual virus-specific T cells to fetal allo-HLA-C may thereby have detrimental consequences for the success of pregnancy. To explore the presence of cross-reactivity to HLA-C and the other non-classical HLA antigens expressed by trophoblasts, HLA-A and -B-restricted CD8+ T cells specific for Epstein-Barr virus, Cytomegalovirus, Varicella-Zoster virus, and Influenza virus were tested against target cells expressing HLA-C, -E, and -G molecules. An HLA-B*08:01-restricted EBV-specific T cell clone displayed cross-reactivity against HLA-C*01:02. Furthermore, cross-reactivity of HLA-C-restricted virus-specific CD8+ T cells was observed for HCMV HLA-C*06:02/TRA CD8+ T cell lines and clones against HLA-C*03:02. Collectively, these results demonstrate that cross-reactivity against HLA-C can occur and thereby may affect pregnancy outcome

    Perioperative pharmacokinetic-guided factor VIII concentrate dosing in haemophilia (OPTI-CLOT trial):an open-label, multicentre, randomised, controlled trial

    Get PDF
    Background Dosing of replacement therapy with factor VIII concentrate in patients with haemophilia A in the perioperative setting is challenging. Underdosing and overdosing of factor VIII concentrate should be avoided to minimise risk of perioperative bleeding and treatment costs. We hypothesised that dosing of factor VIII concentrate on the basis of a patient's pharmacokinetic profile instead of bodyweight, which is standard treatment, would reduce factor VIII consumption and improve the accuracy of attained factor VIII levels. Methods In this open-label, multicentre, randomised, controlled trial (OPTI-CLOT), patients were recruited from nine centres in Rotterdam, Groningen, Utrecht, Nijmegen, The Hague, Leiden, Amsterdam, Eindhoven, and Maastricht in The Netherlands. Eligible patients were aged 12 years or older with severe or moderate haemophilia A (severe haemophilia was defined as factor VIII concentrations of Findings Between May 1, 2014, and March 1, 2020, 98 patients were assessed for eligibility and 66 were enrolled in the trial and randomly assigned to the pharmacokinetic-guided treatment group (34 [52%]) or the standard treatment group (32 [48%]). Median age was 49.1 years (IQR 35.0 to 62.1) and all participants were male. No difference was seen in consumption of factor VIII concentrate during the perioperative period between groups (mean consumption of 365 IU/kg [SD 202] in pharmacokinetic-guided treatment group vs 379 IU/kg [202] in standard treatment group; adjusted difference -6 IU/kg [95% CI -88 to 100]). Postoperative bleeding occurred in six (18%) of 34 patients in the pharmacokinetic-guided treatment group and three (9%) of 32 in the standard treatment group. One grade 4 postoperative bleeding event occurred, which was in one (3%) patient in the standard treatment group. No treatment-related deaths occurred. Interpretation Although perioperative pharmacokinetic-guided dosing is safe, it leads to similar perioperative factor VIII consumption when compared with standard treatment. However, pharmacokinetic-guided dosing showed an improvement in obtaining factor VIII concentrations within the desired perioperative factor VIII range. These findings provide support to further investigation of pharmacokinetic-guided dosing in perioperative haemophilia care. Copyright (C) 2021 Elsevier Ltd. All rights reserved

    von Willebrand Factor and Factor VIII Clearance in Perioperative Hemophilia A Patients

    Get PDF
    Background von Willebrand factor (VWF) is crucial for optimal dosing of factor VIII (FVIII) concentrate in hemophilia A patients as it protects FVIII from premature clearance. To date, it is unknown how VWF behaves and what its impact is on FVIII clearance in the perioperative setting. Aim To investigate VWF kinetics (VWF antigen [VWF:Ag]), VWF glycoprotein Ib binding (VWF:GPIbM), and VWF propeptide (VWFpp) in severe and moderate perioperative hemophilia A patients included in the randomized controlled perioperative OPTI-CLOT trial. Methods Linear mixed effects modeling was applied to analyze VWF kinetics. One-way and two-way analyses of variance were used to investigate perioperative VWFpp/VWF:Ag ratios and associations with surgical bleeding. Results Fifty-nine patients with median age of 48.8 years (interquartile range: 34.8-60.0) were included. VWF:Ag and VWF:GPIbM increased significantly postoperatively. Blood type non-O or medium risk surgery were associated with higher VWF:Ag and VWF:GPIbM levels compared with blood type O and low risk surgery. VWFpp/VWF:Ag was significantly higher immediately after surgery than 32 to 57 hours after surgery (p < 0.001). Lowest VWF:Ag quartile (0.43-0.92 IU/mL) was associated with an increase of FVIII concentrate clearance of 26 mL/h (95% confidence interval: 2-50 mL/h) compared with highest VWF antigen quartile (1.70-3.84 IU/mL). VWF levels were not associated with perioperative bleeding F (4,227) = 0.54, p = 0.710. Conclusion VWF:Ag and VWF:GPIbM levels increase postoperatively, most significantly in patients with blood type non-O or medium risk surgery. Lower VWF antigen levels did not lead to clinically relevant higher FVIII clearance. VWF:Ag or VWF:GPIbM levels were not associated with perioperative hemorrhage

    The association between haemorrhage and markers of endothelial insufficiency and inflammation in patients with hypoproliferative thrombocytopenia: a cohort study

    Get PDF
    In daily haematological practice, predicting bleeding in thrombocytopenic patients is difficult, and clinicians adhere to transfusion triggers to guide patients through the aplastic phase of chemotherapy. Platelet count is not the only determinant of bleeding and additional mechanisms for impending haemostasis are likely. Beside clot formation, platelets are essential for the maintenance of integrity of vascular beds. We therefore prospectively investigated associations between biomarkers for endothelial damage (urine albumin excretion) and inflammation (C-reactive protein) and bleeding (WHO grading) in 88 patients with 116 on-protocol episodes. We found an increase in grade 2 bleeding with a higher urine albumin/creatinine ratio one day after the measurement [odds ratio (OR) 1·24 for every doubling of the ratio, 95% CI 1·05–1·46, P-value 0·01] and a 29% increase in the odds of grade 2 bleeding for every doubling of serum C-reactive protein (CRP) (95% CI 1·04–1·60, P-value 0·02) after correction for morning platelet count. The 24 h post-transfusion corrected count increment (CCI24) showed a significant association with these biomarkers: increasing urine albumin/creatinine ratio and CRP were associated with lower CCI24. We report two inexpensive and easy-to-apply biomarkers that could be useful in designing a prediction model for bleeding risk in thrombocytopenic patients

    United Kingdom Early Detection Initiative (UK-EDI) : protocol for establishing a national multicentre cohort of individuals with new-onset diabetes for early detection of pancreatic cancer

    Get PDF
    INTRODUCTION: Pancreatic cancer is a leading cause of cancer deaths worldwide. Screening for this disease has potential to improve survival. It is not feasible, with current screening modalities, to screen the asymptomatic adult population. However, screening of individuals in high-risk groups is recommended. Our study aims to provide resources and data that will inform strategies to screen individuals with new-onset diabetes (NOD) for pancreatic cancer. METHODS AND ANALYSIS: The United Kingdom Early Detection Initiative (UK-EDI) for pancreatic cancer is a national, prospective, observational cohort study that aims to recruit 2500 individuals with NOD (<6 months postdiagnosis) aged 50 years and over, with follow-up every 6 months, over a 3-year period. For study eligibility, diagnosis of diabetes is considered to be clinical measurement of haemoglobin A1c ≥48 mmol/mol. Detailed clinical information and biospecimens will be collected at baseline and follow-up to support the development of molecular, epidemiological and demographic biomarkers for earlier detection of pancreatic cancer in the high-risk NOD group. Socioeconomic impacts and cost-effectiveness of earlier detection of pancreatic cancer in individuals with NOD will be evaluated. The UK-EDI NOD cohort will provide a bioresource for future early detection research to be conducted. ETHICS AND DISSEMINATION: The UK-EDI study has been reviewed and approved by the London-West London and GTAC Research Ethics Committee (Ref 20/LO/0058). Study results will be disseminated through presentations at national and international symposia and publication in peer-reviewed, Open Access journals

    The genetic architecture of the human cerebral cortex

    Get PDF
    The cerebral cortex underlies our complex cognitive capabilities, yet little is known about the specific genetic loci that influence human cortical structure. To identify genetic variants that affect cortical structure, we conducted a genome-wide association meta-analysis of brain magnetic resonance imaging data from 51,665 individuals. We analyzed the surface area and average thickness of the whole cortex and 34 regions with known functional specializations. We identified 199 significant loci and found significant enrichment for loci influencing total surface area within regulatory elements that are active during prenatal cortical development, supporting the radial unit hypothesis. Loci that affect regional surface area cluster near genes in Wnt signaling pathways, which influence progenitor expansion and areal identity. Variation in cortical structure is genetically correlated with cognitive function, Parkinson's disease, insomnia, depression, neuroticism, and attention deficit hyperactivity disorder

    The association between haemorrhage and markers of endothelial insufficiency and inflammation in patients with hypoproliferative thrombocytopenia:a cohort study

    No full text
    In daily haematological practice, predicting bleeding in thrombocytopenic patients is difficult, and clinicians adhere to transfusion triggers to guide patients through the aplastic phase of chemotherapy. Platelet count is not the only determinant of bleeding and additional mechanisms for impending haemostasis are likely. Beside clot formation, platelets are essential for the maintenance of integrity of vascular beds. We therefore prospectively investigated associations between biomarkers for endothelial damage (urine albumin excretion) and inflammation (C-reactive protein) and bleeding (WHO grading) in 88 patients with 116 on-protocol episodes. We found an increase in grade 2 bleeding with a higher urine albumin/creatinine ratio one day after the measurement [odds ratio (OR) 1 center dot 24 for every doubling of the ratio, 95% CI 1 center dot 05-1 center dot 46, P-value 0 center dot 01] and a 29% increase in the odds of grade 2 bleeding for every doubling of serum C-reactive protein (CRP) (95% CI 1 center dot 04-1 center dot 60, P-value 0 center dot 02) after correction for morning platelet count. The 24 h post-transfusion corrected count increment (CCI24) showed a significant association with these biomarkers: increasing urine albumin/creatinine ratio and CRP were associated with lower CCI24. We report two inexpensive and easy-to-apply biomarkers that could be useful in designing a prediction model for bleeding risk in thrombocytopenic patients

    Metabolic Maturation of Human Pluripotent Stem Cell-Derived Cardiomyocytes by Inhibition of HIF1 alpha and LDHA

    No full text
    Rationale: Human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) are a readily available, robustly reproducible, and physiologically appropriate human cell source for cardiac disease modeling, drug discovery, and toxicity screenings in vitro. However, unlike adult myocardial cells in vivo, hPSC-CMs cultured in vitro maintain an immature metabolic phenotype, where majority of ATP is produced through aerobic glycolysis instead of oxidative phosphorylation in the mitochondria. Little is known about the underlying signaling pathways controlling hPSC-CMs' metabolic and functional maturation. Objective: To define the molecular pathways controlling cardiomyocytes' metabolic pathway selections and improve cardiomyocyte metabolic and functional maturation. Methods and Results: We cultured hPSC-CMs in different media compositions including glucose-containing media, glucose-containing media supplemented with fatty acids, and glucose-free media with fatty acids as the primary carbon source. We found that cardiomyocytes cultured in the presence of glucose used primarily aerobic glycolysis and aberrantly upregulated HIF1 alpha (hypoxia-inducible factor 1 alpha) and its downstream target lactate dehydrogenase A. Conversely, glucose deprivation promoted oxidative phosphorylation and repressed HIF1 alpha. Small molecule inhibition of HIF1 alpha or lactate dehydrogenase A resulted in a switch from aerobic glycolysis to oxidative phosphorylation. Likewise, siRNA inhibition of HIF1 alpha stimulated oxidative phosphorylation while inhibiting aerobic glycolysis. This metabolic shift was accompanied by an increase in mitochondrial content and cellular ATP levels. Furthermore, functional gene expressions, sarcomere length, and contractility were improved by HIF1 alpha/lactate dehydrogenase A inhibition. Conclusions: We show that under standard culture conditions, the HIF1 alpha-lactate dehydrogenase A axis is aberrantly upregulated in hPSC-CMs, preventing their metabolic maturation. Chemical or siRNA inhibition of this pathway results in an appropriate metabolic shift from aerobic glycolysis to oxidative phosphorylation. This in turn improves metabolic and functional maturation of hPSC-CMs. These findings provide key insight into molecular control of hPSC-CMs' metabolism and may be used to generate more physiologically mature cardiomyocytes for drug screening, disease modeling, and therapeutic purposes
    corecore