415 research outputs found

    Using indirect blockmodeling for monitoring students roles in collaborative learning networks

    Get PDF
    Collaborative learning activities have shown to be useful to address educational processes in several contexts. Monitoring these activities is mandatory to determine the quality of the collaboration and learning processes. Recent research works propose using Social Network Analysis techniques to understand students' collaboration learning process during these experiences. Aligned with that, this paper proposes the use of the indirect blockmodeling network analytic technique for monitoring the behaviour of different social roles played by students in collaborative learning scenarios. The usefulness of this technique was evaluated through a study that analysed the students' interaction network in a collaborative learning activity. Particularly, we tried to understand the structure of the interaction network during that process. Preliminary results suggest that indirect blockmodeling is highly useful for inferring and analysing the students' social roles, when the behaviour of roles are clearly different among them. This technique can be used as a monitoring service that can be embedded in collaborative learning applications.Peer ReviewedPostprint (published version

    Metodología para la enseñanza de la estimación de la incertidumbre de medición en experimentos de física

    Get PDF
    A generic methodology for teaching the estimation of measurement uncertainty of experimental results is presented. This methodology has been designed and implemented in the laboratories of physics that gives the Department of Physics of the Universidad Tecnológica de Pereira, with the aim of creating a culture around this issue. The methodology is based on the GTC-51 standard, "Guide to the expression of uncertainty in measurement" based on international standards that are currently used in science,industry and legal. This standard has been worked out thoroughly by the electrophysiology group in the Department of Physics of the UTP, in its research in metrology, able to implement through projects co-financed by COLCIENCIAS. As a result of this experience has generated a culture that promotes the expression of experimental results with the corresponding estimate of measurement uncertainty, starting from the Laboratory of Physics I to the experimental results obtained in undergraduate work and researchdevelopments made by the research groups of our department.Se presenta en este trabajo una metodología genérica para la enseñanza de la estimación de la incertidumbre de medición de resultados experimentales. Esta metodología ha sido diseñada e implementada en los laboratorios de física que imparte el departamento de física de la Universidad Tecnológica de Pereira con el objetivo de crear una cultura alrededor de este tema. La metodología se basa en la norma GTC-51 “Guía para la expresión de la incertidumbre en las mediciones” basada en normas internacionales que actualmente son utilizadas a nivel científico, industrial y legal. Esta norma ha sido trabajada con profundidad por el grupo de electrofisiología del departamento de física de la UTP, en su línea de investigación en metrología, logrando implementarla por medio de los proyectos cofinanciados por COLCIENCIAS. Como resultado de esta experiencia se ha generado toda una cultura que propende por la expresión de los resultados experimentales con la correspondiente estimación de su incertidumbre de medición, partiendo desde el laboratorio de física I hasta los resultados que se obtienen en trabajos de grado y en desarrollos experimentales obtenidos por los grupos de investigación de nuestro departamento

    The Overall Coefficient of the Two-loop Superstring Amplitude Using Pure Spinors

    Get PDF
    Using the results recently obtained for computing integrals over (non-minimal) pure spinor superspace, we compute the coefficient of the massless two-loop four-point amplitude from first principles. Contrasting with the mathematical difficulties in the RNS formalism where unknown normalizations of chiral determinant formulae force the two-loop coefficient to be determined only indirectly through factorization, the computation in the pure spinor formalism can be smoothly carried out.Comment: 29 pages, harvmac TeX. v2: add reference

    The impact of environmental metals in young urbanites’ brains

    Get PDF
    Air pollution exposures are linked to cognitive and olfaction deficits, oxidative stress, neuroinflammation and neurodegeneration including frontal hyperphosphorilated tau and diffuse amyloid plaques in Mexico City children and young adults. Mexico City residents are chronically exposed to fine particulate matter (PM2.5) concentrations (containing toxic combustion and industrial metals) above the annual standard (15 μg/m3) and to contaminated water and soil. Here, we sought to address the brain-region-specific effects of metals and key neuroinflammatory and DNA repair responses in two air pollution targets: frontal lobe and olfactory bulb from 12 controls v 47 Mexico City children and young adults average age 33.06 ± 4.8 SE years. Inductively coupled plasma mass spectrometry (metal analysis) and real time PCR (for COX2, IL1β and DNA repair genes) in target tissues. Mexico City residents had higher concentrations of metals associated with PM: manganese (p=0.003), nickel and chromium (p=0.02) along with higher frontal COX2 mRNA (p=0.008) and IL1β (p=0.0002) and COX2 (p=0.005) olfactory bulb indicating neuroinflammation. Frontal metals correlated with olfactory bulb DNA repair genes and with frontal and hippocampal inflammatory genes. Frontal manganese, cobalt and selenium increased with age in exposed subjects

    Measurement of the cosmic ray spectrum above 4×10184{\times}10^{18} eV using inclined events detected with the Pierre Auger Observatory

    Full text link
    A measurement of the cosmic-ray spectrum for energies exceeding 4×10184{\times}10^{18} eV is presented, which is based on the analysis of showers with zenith angles greater than 6060^{\circ} detected with the Pierre Auger Observatory between 1 January 2004 and 31 December 2013. The measured spectrum confirms a flux suppression at the highest energies. Above 5.3×10185.3{\times}10^{18} eV, the "ankle", the flux can be described by a power law EγE^{-\gamma} with index γ=2.70±0.02(stat)±0.1(sys)\gamma=2.70 \pm 0.02 \,\text{(stat)} \pm 0.1\,\text{(sys)} followed by a smooth suppression region. For the energy (EsE_\text{s}) at which the spectral flux has fallen to one-half of its extrapolated value in the absence of suppression, we find Es=(5.12±0.25(stat)1.2+1.0(sys))×1019E_\text{s}=(5.12\pm0.25\,\text{(stat)}^{+1.0}_{-1.2}\,\text{(sys)}){\times}10^{19} eV.Comment: Replaced with published version. Added journal reference and DO

    Energy Estimation of Cosmic Rays with the Engineering Radio Array of the Pierre Auger Observatory

    Full text link
    The Auger Engineering Radio Array (AERA) is part of the Pierre Auger Observatory and is used to detect the radio emission of cosmic-ray air showers. These observations are compared to the data of the surface detector stations of the Observatory, which provide well-calibrated information on the cosmic-ray energies and arrival directions. The response of the radio stations in the 30 to 80 MHz regime has been thoroughly calibrated to enable the reconstruction of the incoming electric field. For the latter, the energy deposit per area is determined from the radio pulses at each observer position and is interpolated using a two-dimensional function that takes into account signal asymmetries due to interference between the geomagnetic and charge-excess emission components. The spatial integral over the signal distribution gives a direct measurement of the energy transferred from the primary cosmic ray into radio emission in the AERA frequency range. We measure 15.8 MeV of radiation energy for a 1 EeV air shower arriving perpendicularly to the geomagnetic field. This radiation energy -- corrected for geometrical effects -- is used as a cosmic-ray energy estimator. Performing an absolute energy calibration against the surface-detector information, we observe that this radio-energy estimator scales quadratically with the cosmic-ray energy as expected for coherent emission. We find an energy resolution of the radio reconstruction of 22% for the data set and 17% for a high-quality subset containing only events with at least five radio stations with signal.Comment: Replaced with published version. Added journal reference and DO

    Measurement of the Radiation Energy in the Radio Signal of Extensive Air Showers as a Universal Estimator of Cosmic-Ray Energy

    Full text link
    We measure the energy emitted by extensive air showers in the form of radio emission in the frequency range from 30 to 80 MHz. Exploiting the accurate energy scale of the Pierre Auger Observatory, we obtain a radiation energy of 15.8 \pm 0.7 (stat) \pm 6.7 (sys) MeV for cosmic rays with an energy of 1 EeV arriving perpendicularly to a geomagnetic field of 0.24 G, scaling quadratically with the cosmic-ray energy. A comparison with predictions from state-of-the-art first-principle calculations shows agreement with our measurement. The radiation energy provides direct access to the calorimetric energy in the electromagnetic cascade of extensive air showers. Comparison with our result thus allows the direct calibration of any cosmic-ray radio detector against the well-established energy scale of the Pierre Auger Observatory.Comment: Replaced with published version. Added journal reference and DOI. Supplemental material in the ancillary file

    ANN multiscale model of anti-HIV Drugs activity vs AIDS prevalence in the US at county level based on information indices of molecular graphs and social networks

    Get PDF
    [Abstract] This work is aimed at describing the workflow for a methodology that combines chemoinformatics and pharmacoepidemiology methods and at reporting the first predictive model developed with this methodology. The new model is able to predict complex networks of AIDS prevalence in the US counties, taking into consideration the social determinants and activity/structure of anti-HIV drugs in preclinical assays. We trained different Artificial Neural Networks (ANNs) using as input information indices of social networks and molecular graphs. We used a Shannon information index based on the Gini coefficient to quantify the effect of income inequality in the social network. We obtained the data on AIDS prevalence and the Gini coefficient from the AIDSVu database of Emory University. We also used the Balaban information indices to quantify changes in the chemical structure of anti-HIV drugs. We obtained the data on anti-HIV drug activity and structure (SMILE codes) from the ChEMBL database. Last, we used Box-Jenkins moving average operators to quantify information about the deviations of drugs with respect to data subsets of reference (targets, organisms, experimental parameters, protocols). The best model found was a Linear Neural Network (LNN) with values of Accuracy, Specificity, and Sensitivity above 0.76 and AUROC > 0.80 in training and external validation series. This model generates a complex network of AIDS prevalence in the US at county level with respect to the preclinical activity of anti-HIV drugs in preclinical assays. To train/validate the model and predict the complex network we needed to analyze 43,249 data points including values of AIDS prevalence in 2,310 counties in the US vs ChEMBL results for 21,582 unique drugs, 9 viral or human protein targets, 4,856 protocols, and 10 possible experimental measures.Ministerio de Educación, Cultura y Deportes; AGL2011-30563-C03-0
    corecore