180 research outputs found

    Our Good and Faithful Servant : James Moore Wayne and Georgia Unionism

    Get PDF
    Since the Civil War, historians have tried to understand why eleven southern states seceded from the Union to form a new nation, the Confederate States of America. What compelled the South to favor disunion over union? While enduring stereotypes perpetuated by the Myth of the Lost Cause cast most southerners of the antebellum era as ardent secessionists, not all southerners favored disunion. In addition, not all states were enthusiastic about the prospects of leaving one Union only to join another. Secession and disunion have helped shape the identity of the imagined South, but many Georgians opposed secession. This dissertation examines the life of U.S. Supreme Court Justice James Moore Wayne (1790-1867), a staunch Unionist from Savannah, Georgia. Wayne remained on the U.S. Supreme Court during the American Civil War, and this study explores why he remained loyal to the Union when his home state joined the Confederacy. Examining the nature of Wayne’s Unionism opens many avenues of inquiry into the nature of Georgia’s attitudes toward union and disunion in the antebellum era. By exploring the political, economic and social dimensions of Georgia Unionism and long opposition to secession, this work will add to the growing list of studies of southern Unionists

    Design of 280 GHz feedhorn-coupled TES arrays for the balloon-borne polarimeter SPIDER

    Full text link
    We describe 280 GHz bolometric detector arrays that instrument the balloon-borne polarimeter SPIDER. A primary science goal of SPIDER is to measure the large-scale B-mode polarization of the cosmic microwave background in search of the cosmic-inflation, gravitational-wave signature. 280 GHz channels aid this science goal by constraining the level of B-mode contamination from galactic dust emission. We present the focal plane unit design, which consists of a 16×\times16 array of conical, corrugated feedhorns coupled to a monolithic detector array fabricated on a 150 mm diameter silicon wafer. Detector arrays are capable of polarimetric sensing via waveguide probe-coupling to a multiplexed array of transition-edge-sensor (TES) bolometers. The SPIDER receiver has three focal plane units at 280 GHz, which in total contains 765 spatial pixels and 1,530 polarization sensitive bolometers. By fabrication and measurement of single feedhorns, we demonstrate 14.7^{\circ} FHWM Gaussian-shaped beams with <<1% ellipticity in a 30% fractional bandwidth centered at 280 GHz. We present electromagnetic simulations of the detection circuit, which show 94% band-averaged, single-polarization coupling efficiency, 3% reflection and 3% radiative loss. Lastly, we demonstrate a low thermal conductance bolometer, which is well-described by a simple TES model and exhibits an electrical noise equivalent power (NEP) = 2.6 ×\times 1017^{-17} W/Hz\sqrt{\mathrm{Hz}}, consistent with the phonon noise prediction.Comment: Proceedings of SPIE Astronomical Telescopes + Instrumentation 201

    The Ninth Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the SDSS-III Baryon Oscillation Spectroscopic Survey

    Get PDF
    The Sloan Digital Sky Survey III (SDSS-III) presents the first spectroscopic data from the Baryon Oscillation Spectroscopic Survey (BOSS). This ninth data release (DR9) of the SDSS project includes 535,995 new galaxy spectra (median z=0.52), 102,100 new quasar spectra (median z=2.32), and 90,897 new stellar spectra, along with the data presented in previous data releases. These spectra were obtained with the new BOSS spectrograph and were taken between 2009 December and 2011 July. In addition, the stellar parameters pipeline, which determines radial velocities, surface temperatures, surface gravities, and metallicities of stars, has been updated and refined with improvements in temperature estimates for stars with T_eff<5000 K and in metallicity estimates for stars with [Fe/H]>-0.5. DR9 includes new stellar parameters for all stars presented in DR8, including stars from SDSS-I and II, as well as those observed as part of the SDSS-III Sloan Extension for Galactic Understanding and Exploration-2 (SEGUE-2). The astrometry error introduced in the DR8 imaging catalogs has been corrected in the DR9 data products. The next data release for SDSS-III will be in Summer 2013, which will present the first data from the Apache Point Observatory Galactic Evolution Experiment (APOGEE) along with another year of data from BOSS, followed by the final SDSS-III data release in December 2014.Comment: 9 figures; 2 tables. Submitted to ApJS. DR9 is available at http://www.sdss3.org/dr

    The Baryon Oscillation Spectroscopic Survey of SDSS-III

    Get PDF
    The Baryon Oscillation Spectroscopic Survey (BOSS) is designed to measure the scale of baryon acoustic oscillations (BAO) in the clustering of matter over a larger volume than the combined efforts of all previous spectroscopic surveys of large scale structure. BOSS uses 1.5 million luminous galaxies as faint as i=19.9 over 10,000 square degrees to measure BAO to redshifts z<0.7. Observations of neutral hydrogen in the Lyman alpha forest in more than 150,000 quasar spectra (g<22) will constrain BAO over the redshift range 2.15<z<3.5. Early results from BOSS include the first detection of the large-scale three-dimensional clustering of the Lyman alpha forest and a strong detection from the Data Release 9 data set of the BAO in the clustering of massive galaxies at an effective redshift z = 0.57. We project that BOSS will yield measurements of the angular diameter distance D_A to an accuracy of 1.0% at redshifts z=0.3 and z=0.57 and measurements of H(z) to 1.8% and 1.7% at the same redshifts. Forecasts for Lyman alpha forest constraints predict a measurement of an overall dilation factor that scales the highly degenerate D_A(z) and H^{-1}(z) parameters to an accuracy of 1.9% at z~2.5 when the survey is complete. Here, we provide an overview of the selection of spectroscopic targets, planning of observations, and analysis of data and data quality of BOSS.Comment: 49 pages, 16 figures, accepted by A

    Stable isotope food-web analysis and mercury biomagnification in polar bears ( Ursus maritimus )

    Full text link
    Mercury (Hg) biomagnification occurs in many ecosystems, resulting in a greater potential for toxicological effects in higher-level trophic feeders. However, Hg transport pathways through different food-web channels are not well known, particularly in high-latitude systems affected by the atmospheric Hg deposition associated with snow and ice. Here, we report on stable carbon and nitrogen isotope ratios, and Hg concentrations, determined for 26, late 19th and early 20th century, polar bear ( Ursus maritimus ) hair specimens, collected from catalogued museum collections. These data elucidate relationships between the high-latitude marine food-web structure and Hg concentrations in polar bears. The carbon isotope compositions of polar bear hairs suggest that polar bears derive nutrition from coupled food-web channels, based in pelagic and sympagic primary producers, whereas the nitrogen isotope compositions indicate that polar bears occupy > fourth-level trophic positions. Our results show a positive correlation between polar bear hair Hg concentrations and δ 15 N. Interpretation of the stable isotope data in combination with Hg concentrations tentatively suggests that polar bears participating in predominantly pelagic food webs exhibit higher mercury concentrations than polar bears participating in predominantly sympagic food webs.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/73930/1/j.1751-8369.2009.00114.x.pd

    Atacama Cosmology Telescope: Weighing Distant Clusters with the Most Ancient Light

    Get PDF
    We use gravitational lensing of the cosmic microwave background (CMB) to measure the mass of the most distant blindly selected sample of galaxy clusters on which a lensing measurement has been performed to date. In CMB data from the the Atacama Cosmology Telescope and the Planck satellite, we detect the stacked lensing effect from 677 near-infrared-selected galaxy clusters from the Massive and Distant Clusters of WISE Survey (MaDCoWS), which have a mean redshift of ⟨z⟩ = 1.08. There are currently no representative optical weak lensing measurements of clusters that match the distance and average mass of this sample. We detect the lensing signal with a significance of 4.2σ. We model the signal with a halo model framework to find the mean mass of the population from which these clusters are drawn. Assuming that the clusters follow Navarro–Frenk–White (NFW) density profiles, we infer a mean mass of ⟨M_(500c)⟩ = (1.7±0.4)×10¹⁴M⊙. We consider systematic uncertainties from cluster redshift errors, centering errors, and the shape of the NFW profile. These are all smaller than 30% of our reported uncertainty. This work highlights the potential of CMB lensing to enable cosmological constraints from the abundance of distant clusters populating ever larger volumes of the observable universe, beyond the capabilities of optical weak lensing measurements

    The Simons Observatory microwave SQUID multiplexing detector module design

    Full text link
    Advances in cosmic microwave background (CMB) science depend on increasing the number of sensitive detectors observing the sky. New instruments deploy large arrays of superconducting transition-edge sensor (TES) bolometers tiled densely into ever larger focal planes. High multiplexing factors reduce the thermal loading on the cryogenic receivers and simplify their design. We present the design of focal-plane modules with an order of magnitude higher multiplexing factor than has previously been achieved with TES bolometers. We focus on the novel cold readout component, which employs microwave SQUID multiplexing (μ\mumux). Simons Observatory will use 49 modules containing 60,000 bolometers to make exquisitely sensitive measurements of the CMB. We validate the focal-plane module design, presenting measurements of the readout component with and without a prototype detector array of 1728 polarization-sensitive bolometers coupled to feedhorns. The readout component achieves a 95%95\% yield and a 910 multiplexing factor. The median white noise of each readout channel is 65 pA/Hz\mathrm{pA/\sqrt{Hz}}. This impacts the projected SO mapping speed by <8%< 8\%, which is less than is assumed in the sensitivity projections. The results validate the full functionality of the module. We discuss the measured performance in the context of SO science requirements, which are exceeded.Comment: Accepted to The Astrophysical Journa
    corecore