24 research outputs found

    Examining the Role of Chloride Ligands on Defect Removal in Imperfectly Attached Semiconductor Nanocrystals for 1D and 2D Attachment Cases

    Full text link
    Semiconducting, core-shell nanocrystals (NCs) are promising building blocks for the construction of higher dimensional artificial nanostructures using oriented attachment. However, the assembly and epitaxial attachment steps critical to this construction introduce disorder and defects which inhibit the observation of desirable emergent electronic phenomena. Consequently, understanding defect formation and remediation in these systems as a function of dimensionality is a crucial step to perfecting their synthesis. In this work, we use in situ high resolution transmission electron microscopy to examine the role of chloride ligands as remediator agents for imperfect attachment interfaces between CdSe/CdS core-shell NCs for both 1D and 2D attachment cases. In the 1D case, we find that the presence of chloride additives in imperfectly attached NC dimers can result in defect removal speeds nearly twice as large as those found in their plain, non-chloride treated counterparts. However, when we increased the dimensionality of the system and examined 2D NC arrays, we found no statistically significant difference in attachment interface quality between the chloride and non-chloride treated samples. We propose that this discongruity arises from fundamental differences between 1D and 2D NC attachment and discuss synthetic guidelines to inform future nanomaterial superlattice design.Comment: 35 pages, 6 figures, work conducted at the University of California, Berkele

    Millimeter-scale exfoliation of hBN with tunable flake thickness

    Full text link
    As a two-dimensional (2D) dielectric material, hexagonal boron nitride (hBN) is in high demand for applications in photonics, nonlinear optics, and nanoelectronics. Unfortunately, the high-throughput preparation of macroscopic-scale, high-quality hBN flakes with controlled thickness is an ongoing challenge, limiting device fabrication and technological integration. Here, we present a metal thin-film exfoliation method to prepare hBN flakes with millimeter-scale dimension, near-unity yields, and tunable flake thickness distribution from 1-7 layers, a substantial improvement over scotch tape exfoliation. The single crystallinity and high quality of the exfoliated hBN are demonstrated with optical microscopy, atomic force microscopy, Raman spectroscopy, and second harmonic generation. We further explore a possible mechanism for the effectiveness and selectivity based on thin-film residual stress measurements, density functional theory calculations, and transmission electron microscopy imaging of the deposited metal films. We find that the magnitude of the residual tensile stress induced by thin film deposition plays a key role in determining exfoliated flake thickness in a manner which closely resembles 3D semiconductor spalling. Lastly, we demonstrate that our exfoliated, large-area hBN flakes can be readily incorporated as encapsulating layers for other 2D monolayers. Altogether, this method brings us one step closer to the high throughput, mass production of hBN-based 2D photonic, optoelectronic, and quantum devices.Comment: 21 pages, 5 figures, work completed at Stanford Universit

    Abdominal aortic aneurysm is associated with a variant in low-density lipoprotein receptor-related protein 1

    Get PDF
    Abdominal aortic aneurysm (AAA) is a common cause of morbidity and mortality and has a significant heritability. We carried out a genome-wide association discovery study of 1866 patients with AAA and 5435 controls and replication of promising signals (lead SNP with a p value < 1 × 10-5) in 2871 additional cases and 32,687 controls and performed further follow-up in 1491 AAA and 11,060 controls. In the discovery study, nine loci demonstrated association with AAA (p < 1 × 10-5). In the replication sample, the lead SNP at one of these loci, rs1466535, located within intron 1 of low-density-lipoprotein receptor-related protein 1 (LRP1) demonstrated significant association (p = 0.0042). We confirmed the association of rs1466535 and AAA in our follow-up study (p = 0.035). In a combined analysis (6228 AAA and 49182 controls), rs1466535 had a consistent effect size and direction in all sample sets (combined p = 4.52 × 10-10, odds ratio 1.15 [1.10-1.21]). No associations were seen for either rs1466535 or the 12q13.3 locus in independent association studies of coronary artery disease, blood pressure, diabetes, or hyperlipidaemia, suggesting that this locus is specific to AAA. Gene-expression studies demonstrated a trend toward increased LRP1 expression for the rs1466535 CC genotype in arterial tissues; there was a significant (p = 0.029) 1.19-fold (1.04-1.36) increase in LRP1 expression in CC homozygotes compared to TT homozygotes in aortic adventitia. Functional studies demonstrated that rs1466535 might alter a SREBP-1 binding site and influence enhancer activity at the locus. In conclusion, this study has identified a biologically plausible genetic variant associated specifically with AAA, and we suggest that this variant has a possible functional role in LRP1 expression

    Genome-wide association identifies nine common variants associated with fasting proinsulin levels and provides new insights into the pathophysiology of type 2 diabetes.

    Get PDF
    OBJECTIVE: Proinsulin is a precursor of mature insulin and C-peptide. Higher circulating proinsulin levels are associated with impaired ÎČ-cell function, raised glucose levels, insulin resistance, and type 2 diabetes (T2D). Studies of the insulin processing pathway could provide new insights about T2D pathophysiology. RESEARCH DESIGN AND METHODS: We have conducted a meta-analysis of genome-wide association tests of ∌2.5 million genotyped or imputed single nucleotide polymorphisms (SNPs) and fasting proinsulin levels in 10,701 nondiabetic adults of European ancestry, with follow-up of 23 loci in up to 16,378 individuals, using additive genetic models adjusted for age, sex, fasting insulin, and study-specific covariates. RESULTS: Nine SNPs at eight loci were associated with proinsulin levels (P < 5 × 10(-8)). Two loci (LARP6 and SGSM2) have not been previously related to metabolic traits, one (MADD) has been associated with fasting glucose, one (PCSK1) has been implicated in obesity, and four (TCF7L2, SLC30A8, VPS13C/C2CD4A/B, and ARAP1, formerly CENTD2) increase T2D risk. The proinsulin-raising allele of ARAP1 was associated with a lower fasting glucose (P = 1.7 × 10(-4)), improved ÎČ-cell function (P = 1.1 × 10(-5)), and lower risk of T2D (odds ratio 0.88; P = 7.8 × 10(-6)). Notably, PCSK1 encodes the protein prohormone convertase 1/3, the first enzyme in the insulin processing pathway. A genotype score composed of the nine proinsulin-raising alleles was not associated with coronary disease in two large case-control datasets. CONCLUSIONS: We have identified nine genetic variants associated with fasting proinsulin. Our findings illuminate the biology underlying glucose homeostasis and T2D development in humans and argue against a direct role of proinsulin in coronary artery disease pathogenesis

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∌99% of the euchromatic genome and is accurate to an error rate of ∌1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Increasing frailty is associated with higher prevalence and reduced recognition of delirium in older hospitalised inpatients: results of a multi-centre study

    Get PDF
    Purpose: Delirium is a neuropsychiatric disorder delineated by an acute change in cognition, attention, and consciousness. It is common, particularly in older adults, but poorly recognised. Frailty is the accumulation of deficits conferring an increased risk of adverse outcomes. We set out to determine how severity of frailty, as measured using the CFS, affected delirium rates, and recognition in hospitalised older people in the United Kingdom. Methods: Adults over 65 years were included in an observational multi-centre audit across UK hospitals, two prospective rounds, and one retrospective note review. Clinical Frailty Scale (CFS), delirium status, and 30-day outcomes were recorded. Results: The overall prevalence of delirium was 16.3% (483). Patients with delirium were more frail than patients without delirium (median CFS 6 vs 4). The risk of delirium was greater with increasing frailty [OR 2.9 (1.8–4.6) in CFS 4 vs 1–3; OR 12.4 (6.2–24.5) in CFS 8 vs 1–3]. Higher CFS was associated with reduced recognition of delirium (OR of 0.7 (0.3–1.9) in CFS 4 compared to 0.2 (0.1–0.7) in CFS 8). These risks were both independent of age and dementia. Conclusion: We have demonstrated an incremental increase in risk of delirium with increasing frailty. This has important clinical implications, suggesting that frailty may provide a more nuanced measure of vulnerability to delirium and poor outcomes. However, the most frail patients are least likely to have their delirium diagnosed and there is a significant lack of research into the underlying pathophysiology of both of these common geriatric syndromes

    Examining the Role of Chloride Ligands on Defect Removal in Imperfectly Attached Semiconductor Nanocrystals for 1D and 2D Attachment Cases

    No full text
    Semiconducting core–shell nanocrystals (NCs) are promising building blocks for the construction of higher dimensional artificial nanostructures using oriented attachment. However, the assembly and epitaxial attachment steps critical to this construction introduce disorder and defects which inhibit the observation of desirable emergent electronic phenomena. Consequently, understanding defect formation and remediation in these systems as a function of dimensionality is a crucial step to perfecting their synthesis. In this work, we use in situ high-resolution transmission electron microscopy to examine the role of chloride ligands as remediator agents for imperfect attachment interfaces between CdSe/CdS core–shell NCs for both 1D and 2D attachment cases. In the 1D case, we find that the presence of chloride additives in imperfectly attached NC dimers can result in defect removal speeds nearly twice as large as those found in their plain, non-chloride treated counterparts. However, when we increased the dimensionality of the system and examined 2D NC arrays, we found no statistically significant difference in attachment interface quality between the chloride and non-chloride treated samples. We propose that this discongruity arises from fundamental differences between 1D and 2D NC attachment and discuss synthetic guidelines to inform future nanomaterial superlattice design

    Improving health and tackling health inequities through the non-health sector.

    No full text
    International audienc

    A Bibliography of Dissertations Related to Illinois History, 1996-2011

    No full text

    Risk of COVID-19 after natural infection or vaccinationResearch in context

    No full text
    Summary: Background: While vaccines have established utility against COVID-19, phase 3 efficacy studies have generally not comprehensively evaluated protection provided by previous infection or hybrid immunity (previous infection plus vaccination). Individual patient data from US government-supported harmonized vaccine trials provide an unprecedented sample population to address this issue. We characterized the protective efficacy of previous SARS-CoV-2 infection and hybrid immunity against COVID-19 early in the pandemic over three-to six-month follow-up and compared with vaccine-associated protection. Methods: In this post-hoc cross-protocol analysis of the Moderna, AstraZeneca, Janssen, and Novavax COVID-19 vaccine clinical trials, we allocated participants into four groups based on previous-infection status at enrolment and treatment: no previous infection/placebo; previous infection/placebo; no previous infection/vaccine; and previous infection/vaccine. The main outcome was RT-PCR-confirmed COVID-19 >7–15 days (per original protocols) after final study injection. We calculated crude and adjusted efficacy measures. Findings: Previous infection/placebo participants had a 92% decreased risk of future COVID-19 compared to no previous infection/placebo participants (overall hazard ratio [HR] ratio: 0.08; 95% CI: 0.05–0.13). Among single-dose Janssen participants, hybrid immunity conferred greater protection than vaccine alone (HR: 0.03; 95% CI: 0.01–0.10). Too few infections were observed to draw statistical inferences comparing hybrid immunity to vaccine alone for other trials. Vaccination, previous infection, and hybrid immunity all provided near-complete protection against severe disease. Interpretation: Previous infection, any hybrid immunity, and two-dose vaccination all provided substantial protection against symptomatic and severe COVID-19 through the early Delta period. Thus, as a surrogate for natural infection, vaccination remains the safest approach to protection. Funding: National Institutes of Health
    corecore