183 research outputs found

    Boundary Effects on Ideal Fluid Forces and Kelvin's Minimum Energy Theorem

    Full text link
    The electrostatic force on a charge above a neutral conductor is generally attractive. Surprisingly, that force becomes repulsive in certain geometries (Levin & Johnson 2011), a result that follows from an energy theorem in electrostatics. Based on the analogous minimum energy theorem of Kelvin (1849), valid in the theory of ideal fluids, we show corresponding effects on steady and unsteady fluid forces in the presence of boundaries. We present a model of a body approaching a boundary, where the unsteady force is typically repulsive (Lamb 1975, {\S}137). We also present a model of a Bernoulli suction gripper, for which the steady force is typically attractive. Both the unsteady and steady forces are shown to reverse sign when boundaries approximate flow streamlines, at energy minima predicted by Kelvin's theorem

    Biological Manganese Oxidation by Pseudomonas putida in Trickling Filters

    Get PDF
    Manganese (Mn) is considered a nuisance chemical in drinking water. Manganese causes problems with staining, foul odor, undesirable tastes, and can be corrosive to pipelines. The United States Environmental Protection Agency (US EPA) recommends a secondary maximum contaminant level for Mn below a concentration of 0.05 mg/L. Currently manganese contaminated water is typically treated using expensive and potentially harmful oxidizing agents. Biological treatment techniques have been researched as a viable alternative for removing undesired chemicals from drinking water. In this study, bench scale trickling filters were constructed to compare the Mn removal efficiency between biochemical and abiotic processes. Glass beads between three and five millimeters in diameter were used as the solid media in the trickling filters with and without inoculation of a Mn oxidizing bacterium, Pseudomonas putida. Manganese oxidation and removal was found to be significantly greater in trickling filters with Pseudomonas putida biofilms after startup times of only 48 hours. Mn oxidation in Pseudomonas putida inoculated trickling filters was up to 75% greater than non-inoculated filters. One dimensional advection dispersive models were formulated to describe the transport of Mn in trickling filter porous media. Using the data collected in the experiments, the model predicted that that an average of 10 mg/L of influent Mn (II) concentration can be decreased by 78.56% with a filter depth of only 10 cm. The rapid startup time and the high Mn removal capacity of trickling filters inoculated with Pseudomonas putida can potentially become a mainstream treatment system in conjunction with sand filters

    Mussels as a dietary source of omega-3 fatty acids

    Get PDF
    Numerous United Kingdom and European Union expert panels recommend that the general adult population consumes ~250mg of EPA+DHA per day through the consumption of 1 portion of oily fish per week. Of particular importance are the long chain omega-3 fatty acids EPA (eicosapentaenoic acid) and DHA (docosahexaenoic acid), which are only found in appreciable amounts in marine organisms. Increasing oily fish consumption conflicts with sustaining fisheries and so alternative dietary sources of EPA+DHA must be explored. Mussels are high in omega-3 PUFAs and are a good source of essential amino acids. Therefore, the present study aimed to investigate the impact of introducing mussels as a protein source in the lunchtime meal 3 times per week for 2 weeks on omega-3 status in free-living participants. Following an initial 2-week monitoring period, 12 participants (8 male, 4 female) attended the nutrition laboratory 3 times per week for two weeks. Each participant received a personalised lunch constituting one-third of their typical daily calorie consumption with ~20% of the calories supplied as cooked mussels. A portion of cooked mussels from each feeding occasion was tested for total omega-3 content. The mean ± SD mussel EPA+DHA content was 518.9 ± 155.7mg/100g cooked weight meaning that each participant received on average 709.2 ± 252.6mg of EPA+DHA per meal or 304.0 ± 108.2mg of EPA+DHA per day. Blood spot analysis revealed a significant increase in the omega-3 index (week 1 = 4.27 ± 0.81; week 4 = 5.07 ± 1.00) and whole blood EPA content during the study (%EPA week 1 = 0.70 ± 0.0.35; %EPA week4 = 0.98 ± 0.35). Consuming mussels 3 times per week for two weeks as the protein source in a personalised lunchtime meal is sufficient to moderately improve the omega-3 index and whole blood DHA+EPA content in young healthy adults

    Evapotranspiration estimates derived using thermal-based satellite remote sensing and data fusion for irrigation management in California vineyards

    Get PDF
    Irrigation in the Central Valley of California is essential for successful wine grape production. With reductions in water availability in much of California due to drought and competing water-use interests, it is important to optimize irrigation management strategies. In the current study, we investigate the utility of satellite-derived maps of evapotranspiration (ET) and the ratio of actual-to-reference ET (fRET) based on remotely sensed land-surface temperature (LST) imagery for monitoring crop water use and stress in vineyards. The Disaggregated Atmosphere Land EXchange Inverse (ALEXI/DisALEXI) surface-energy balance model, a multi-scale ET remote-sensing framework with operational capabilities, is evaluated over two Pinot noir vineyard sites in central California that are being monitored as part of the Grape Remote-Sensing Atmospheric Profile and Evapotranspiration eXperiment (GRAPEX). A data fusion approach is employed to combine ET time-series retrievals from multiple satellite platforms to generate estimates at both the high spatial (30 m) and temporal (daily) resolution required for field-scale irrigation management. Comparisons with micrometeorological data indicate reasonable model performance, with mean absolute errors of 0.6 mm day−1 in ET at the daily time step and minimal bias. Values of fRET agree well with tower observations and reflect known irrigation. Spatiotemporal analyses illustrate the ability of ALEXI/DisALEXI/data fusion package to characterize heterogeneity in ET and fRET both within a vineyard and over the surrounding landscape. These findings will inform the development of strategies for integrating ET mapping time series into operational irrigation management framework, providing actionable information regarding vineyard water use and crop stress at the field and regional scale and at daily to multi-annual time scales.info:eu-repo/semantics/acceptedVersio

    The grape remote sensing atmospheric profile and evapotranspiration experiment

    Get PDF
    Particularly in light of California’s recent multiyear drought, there is a critical need for accurate and timely evapotranspiration (ET) and crop stress information to ensure long-term sustainability of high-value crops. Providing this information requires the development of tools applicable across the continuum from subfield scales to improve water management within individual fields up to watershed and regional scales to assess water resources at county and state levels. High-value perennial crops (vineyards and orchards) are major water users, and growers will need better tools to improve water-use efficiency to remain economically viable and sustainable during periods of prolonged drought. To develop these tools, government, university, and industry partners are evaluating a multiscale remote sensing–based modeling system for application over vineyards. During the 2013–17 growing seasons, the Grape Remote Sensing Atmospheric Profile and Evapotranspiration eXperiment (GRAPEX) project has collected micrometeorological and biophysical data within adjacent pinot noir vineyards in the Central Valley of California. Additionally, each year ground, airborne, and satellite remote sensing data were collected during intensive observation periods (IOPs) representing different vine phenological stages. An overview of the measurements and some initial results regarding the impact of vine canopy architecture on modeling ET and plant stress are presented here. Refinements to the ET modeling system based on GRAPEX are being implemented initially at the field scale for validation and then will be integrated into the regional modeling toolkit for large area assessment.info:eu-repo/semantics/publishedVersio

    The Grape Remote Sensing Atmospheric Profile and Evapotranspiration Experiment

    Get PDF
    Particularly in light of California’s recent multiyear drought, there is a critical need for accurate and timely evapotranspiration (ET) and crop stress information to ensure long-term sustainability of high-value crops. Providing this information requires the development of tools applicable across the continuum from subfield scales to improve water management within individual fields up to watershed and regional scales to assess water resources at county and state levels. High-value perennial crops (vineyards and orchards) are major water users, and growers will need better tools to improve water-use efficiency to remain economically viable and sustainable during periods of prolonged drought. To develop these tools, government, university, and industry partners are evaluating a multiscale remote sensing–based modeling system for application over vineyards. During the 2013–17 growing seasons, the Grape Remote Sensing Atmospheric Profile and Evapotranspiration eXperiment (GRAPEX) project has collected micrometeorological and biophysical data within adjacent pinot noir vineyards in the Central Valley of California. Additionally, each year ground, airborne, and satellite remote sensing data were collected during intensive observation periods (IOPs) representing different vine phenological stages. An overview of the measurements and some initial results regarding the impact of vine canopy architecture on modeling ET and plant stress are presented here. Refinements to the ET modeling system based on GRAPEX are being implemented initially at the field scale for validation and then will be integrated into the regional modeling toolkit for large area assessment

    Scenario planning: the future of the cattle and sheep industries in Scotland and their resiliency to disease

    Get PDF
    In this paper, we present a description of foresighting activities undertaken by EPIC, Scotland’s Centre of Expertise on Animal Disease Outbreaks, to investigate the future uncertainty of animal health security in the Scottish sheep and cattle sectors. Using scenario planning methodologies, we explored four plausible but provocative long-term futures which identify dynamics underpinning the resilience of these agricultural sectors to animal disease. These scenarios highlight a number of important drivers that influence disease resilience: industry demographics, the role of government support and regulation and the capacity for technological innovation to support the industry to meet local and global market demand. Participants in the scenario planning exercises proposed creative, robust strategies that policy makers could consider implementing now to enhance disease control and industry resilience in multiple, uncertain futures. Using these participant-led strategies as a starting point, we offer ten key questions for policy makers and stakeholders to provoke further discussion about improving resiliency and disease preparedness. We conclude with a brief discussion of the value of scenario planning, not only for the development of futures which will inform disease contingency plans and improve industry resilience, but as a mechanism for dialogue and information sharing between stakeholders and government

    Scenario planning as communicative action: lessons from participatory exercises conducted for the Scottish livestock industry

    Get PDF
    AbstractBased on Habermas' Theory of Communicative Action, this paper critiques the transparency and legitimacy of participatory scenario planning, considering a case study of scenario development for the livestock industry within Scotland. The paper considers the extent to which the case study approximates the conditions for ‘ideal speech situations’ and how these conditions could be applied more widely in participatory scenario planning. The authors explore the rationale for participatory scenario planning within the science–policy interface with critical reference to the corporate context in which scenario planning has evolved. The aim is to optimise the potential for its use in the context of socio-technical and environmental governance. Researcher co-reflections on the case study are mapped within a matrix of indices representing conditions for ideal speech situations. Further analytical categories highlight the extent to which ideal speech was approximated. Although many of the constraints on achieving ideal speech situations reflect intransigent, practical logistics of organising participatory exercises, our novel approach enables the systematic identification of some important issues and provides a conceptual framework for understanding how they interrelate that may prove useful to practitioners and theorists alike

    Hospital Malnutrition: Prevalence, Identification and Impact on Patients and the Healthcare System

    Get PDF
    Malnutrition is a debilitating and highly prevalent condition in the acute hospital setting, with Australian and international studies reporting rates of approximately 40%. Malnutrition is associated with many adverse outcomes including depression of the immune system, impaired wound healing, muscle wasting, longer lengths of hospital stay, higher treatment costs and increased mortality. Referral rates for dietetic assessment and treatment of malnourished patients have proven to be suboptimal, thereby increasing the likelihood of developing such aforementioned complications. Nutrition risk screening using a validated tool is a simple technique to rapidly identify patients at risk of malnutrition, and provides a basis for prompt dietetic referrals. In Australia, nutrition screening upon hospital admission is not mandatory, which is of concern knowing that malnutrition remains under-reported and often poorly documented. Unidentified malnutrition not only heightens the risk of adverse complications for patients, but can potentially result in foregone reimbursements to the hospital through casemix-based funding schemes. It is strongly recommended that mandatory nutrition screening be widely adopted in line with published best-practice guidelines to effectively target and reduce the incidence of hospital malnutrition
    • …
    corecore