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ABSTRACT 

Manganese (Mn) is considered a nuisance chemical in drinking water.  

Manganese causes problems with staining, foul odor, undesirable tastes, and can be 

corrosive to pipelines.  The United States Environmental Protection Agency (US EPA) 

recommends a secondary maximum contaminant level for Mn below a concentration of 

0.05 mg/L.  Currently manganese contaminated water is typically treated using 

expensive and potentially harmful oxidizing agents.  Biological treatment techniques 

have been researched as a viable alternative for removing undesired chemicals from 

drinking water.  In this study, bench scale trickling filters were constructed to compare 

the Mn removal efficiency between biochemical and abiotic processes. Glass beads 

between three and five millimeters in diameter were used as the solid media in the 

trickling filters with and without inoculation of a Mn oxidizing bacterium, Pseudomonas 

putida.  Manganese oxidation and removal was found to be significantly greater in 

trickling filters with Pseudomonas putida biofilms after startup times of only 48 hours.  

Mn oxidation in Pseudomonas putida inoculated trickling filters was up to 75% greater 

than non-inoculated filters.  One dimensional advection dispersive models were 

formulated to describe the transport of Mn in trickling filter porous media.  Using the 

data collected in the experiments, the model predicted that that an average of 10 mg/L of 

influent Mn (II) concentration can be decreased  by 78.56% with a filter depth of only 10 

cm.  The rapid startup time and the high Mn removal capacity of trickling filters 

inoculated with Pseudomonas putida can potentially become a mainstream treatment 

system in conjunction with sand filters.   
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NOMENCLATURE 

M – Mass 

L – Length  

T - Time 

rMn – Manganese oxidation rate [M/L3T] 

S – Substrate concentration [M/L3] 

So – Initial substrate concentration [M/L3] 

X – Biomass concentration [M/L3] 

Xo – Initial biomass concentration [M/L3] 

µmax – Maximum specific growth rate [1/T] 

Y – Yield coefficient [M biomass / M substrate] 

Ks – Half saturation constant [M/L3] 

t – Time [T] 

λ – First order decay constant [1/T] 

γ – Zero order growth constant [M/L3T] 

x – Distance [L] 

D – Diffusion Coefficient [L2/T] 

Do – Diffusion coefficient of solute in free water body [L2/T] 

Dlh – Hydrodynamic dispersion coefficient [L2/T] 

α - Dispersion degree [L] 

v – Average porous flow velocity [L/T] 

vD – Darcy velocity [L/T] 

θ – Volumetric water content  

V – Volume [L3] 

R – Retardation factor 
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K – Empirical distribution constant [L3/M] 

∅ - Porosity of solid media 

ρ – Density [M/L3] 
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CHAPTER I  

INTRODUCTION 

I.1 Mn in the environment 

Manganese is a nuisance chemical in drinking water.  Concentrations of Mn as 

low as 0.1 mg/L have shown to cause problems with staining, undesirable taste, bad 

odor, and corrosion of distribution pipes.  The United States Environmental Protection 

Agency (EPA) and The European Commission recommend a Secondary Maximum 

Contaminant Level for Mn below a concentration of 0.05 mg/L (Environmental 

Protection Agency 55; European Commission L330/50-L330/51).  Chronic exposure to 

high doses of manganese (Mn) may cause harmful neurological effects; but there is not 

enough data to make a quantitative assessment of Mn toxicity (Environmental Protection 

Agency 55).  Manganese is the fifth most abundant transition metal and second most 

abundant heavy metal (Tebo et al. 287-328).  Manganese has been detected in roughly 

70% of ground water and 97% of surface water assayed in the United States 

(Environmental Protection Agency 55).  Manganese concentrations in freshwater 

typically range from 0.001 to 0.2 mg/L (Environmental Protection Agency 55).  

Currently treatment facilities that specifically target manganese typically use chemical 

treatment processes. 

Manganese is typically found in nature in its +2, +3, and +4 oxidation state.  

However Mn(III) is unstable and will quickly dissociate to Mn(II) or precipitate as 

Mn(IV) unless it is chelated to another molecule.  Mn(II) is readily soluble in water 



2 

below neutral pH, making it difficult to remove while Mn(IV) forms insoluble, black or 

brown precipitate above 8 pH.  Because Mn(IV) forms a precipitate it can be easily 

removed with common filtration or sedimentation treatment processes.  Natural chemical 

oxidation from Mn(II) to Mn(IV) is a slow process at standard pH and redox conditions 

and can take six to seven years for oxidation to begin (Tebo et al. 287-328; Diem and 

Stumm 1571-1573; Junta and M. 4985-4999; Tekerlekopoulou, I., and D. 292-301; 

Wilson 1311-1317).  The autocatalytic oxidation rate of Mn is three to six times slower 

relative to biological oxidation rates (Tekerlekopoulou, I., and D. 292-301; Tebo S883-

S905; Brouwers et al. 1573-1582).  This indicates that aeration and precipitation alone 

cannot sufficiently remove manganese.  

I.2 Removal of Mn from source water 

The following are the eight conventional treatment processes used for removing 

manganese and iron from drinking water (Mouchet 158-167): 

 Aeration followed by sand filtration or dual media

 Chemical oxidation followed by filtration

 Filtration with a medium that acts as an ion or electron exchanger (greensand,

sand coated with manganese dioxide, and zeolites of volcanic origin)

 Conventional treatment with lime softening

 Using sodium silicate, phosphates, and/or polyphosphates as sequestering agents

 In situ treatments where oxygenated water is pumped into the aquifer using feed

wells to create a treatment area around the main well.

 Biological filtration
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I.2.1 Aeration 

Although manganese can be oxidized by aeration, it is a slow process.  Oxidation 

reduction potential (Eh) and pH conditions required for Mn oxidation is not typically 

found in natural waters.  Conventional diffused aeration systems and hypolimnetic 

aeration systems are used to oxidize Mn(II) in reservoirs so that precipitated Mn(IV) can 

be later removed with filtration.  Conventional diffused aeration systems pump air into 

the bottom of water bodies.  This causes bubbles to form providing mixing and 

oxygenation to the water (Casale, M., and F. 187).  Hypolimentic systems aerate water at 

different temperature gradients allowing for aeration in layers with low dissolved oxygen 

without disturbing the natural stratification of the reservoir (Casale, M., and F. 187).   

I.2.2 Chemical Mn oxidation 

Oxidizing chemicals are typically used as disinfectants.  Conventional water 

treatment techniques use oxidizing agents such as oxygen, chlorine, ozone, chlorine 

dioxide, and potassium permanganate in combination with filters or coagulation and 

sedimentation to remove Mn.  Chlorine is used as the primary disinfectant in 90% of 

treatment facilities in the United States (Kohl and S. 184).  Theoretical reaction 

stoichiometry and corresponding stoichiometric ratios for Mn(II) with different 

oxidizing agents are as follows (Casale, M., and F. 187): 

 O2 (aq)   0.29 mg O2 : 1 mg Mn 

o Mn2+ + 1/2O2 + H2O → MnO2 (s) + 2H+ 

 HOCl  1.30 mg HOCl : 1 mg Mn 
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o Mn2+ + HOCl + H2O → MnO2 (s) + Cl- + 3H+ 

 O3 (aq)  0.88 mg O3 : 1 mg Mn 

o Mn2+ + O3 + H2O → MnO2 (s) + O2 + 2H+ 

 ClO2  2.45 mg ClO2 : 1 mg Mn 

o Mn2+ + 2ClO2 + 2H2O → MnO2 (s) + 2ClO2 + 4H+ 

 KMnO4  1.92 mg KMnO4 : 1 mg Mn 

o 3Mn2+ + 2KMnO4 + 2H2O → 5MnO2 (s) +2K+ + 4H+ 

Free chlorine does not efficiently oxidize Mn.  Manganese oxidation rates using 

chlorine are slow in water bodies with neutral and acidic pH, causing chlorine dosages to 

be much higher than stoichiometric requirements.  Studies have shown that three hours 

of contact time at neutral pH with chlorine dosages four times greater than 

stoichiometric requirements reduces 1 mg/L of Mn to 0.7 mg/L while only one hour of 

contact time is required at pH 9 to reduce 1 mg/L of Mn to less than 0.05 mg/L (Casale, 

M., and F. 187).  Studies have also shown Mn oxidation rates decrease as temperature 

decreases (Casale, M., and F. 187). 

Ozone (O3) directly and efficiently oxidizes Mn at relatively low doses.  

However ozonation is not typically used due to its large capital costs and excess doses 

can potentially oxidize manganese to permanganate, which results in pink effluent water 

(Casale, M., and F. 187).  High concentrations of organic material, humic material, and 

iron have shown to inhibit Mn oxidation (Casale, M., and F. 187).   
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Chlorine dioxide (ClO2) has shown to have similar Mn oxidation mechanisms 

and rates as potassium permanganate.  Mn(II) oxidation by chlorine dioxide has also 

shown to improve with high pH, temperature, and humic carbon.  Research has shown 

that chlorine dioxide is an effective oxidant for removing low initial Mn(II) 

concentrations.  Chlorine dioxide used with sedimentation has shown to remove up to 

95% of Mn in water treatment plants.(Kohl and S. 184). 

These oxidizing agents can be expensive and may form harmful byproducts such 

as bromate, trihalomethanes, and haloacetic acids.  The EPA has strict drinking water 

regulations for these contaminants and each byproduct is potentially carcinogenic and 

mutagenic (Richardson et al. 178-242).  

I.2.3 Filtration with an electron exchanging medium 

Mn(II) can be adsorbed to the surface of filtration media such as zeolite, 

greensand, or pyrolusite (MnO2).  Greensand is a granular filter medium processed from 

glauconite sand with an effective size of 0.30-0.35 mm (Casale, M., and F. 187).  

Greensand needs to be conditioned by oxidizing agents such as chlorine or potassium 

permanganate (KMnO4).  Conditioning increases adsorption by converting Mn2+ on the 

surface of greensand into MnO2 (s).  Greensand facilitates both adsorptive and oxidative 

processes.  Manganese removal rates have shown to be 4.5 g of Mn(II) per 0.028 m3 of 

filter media (Casale, M., and F. 187).  Media removal capacity increases with increasing 

solution pH.  
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Granular pyrolusite can be used to remove manganese through adsorption.  

Similar to greensand filters pyrolusite filters can use chlorine to regenerate the filter 

media.  The main advantage of pyrolusite filters are their relatively high filtration rates, 

typically limited from 2.0 to 2.74 L/m2·sec, but can be as high as between 6.8 and 10.2 

L/m2·sec (Casale, M., and F. 187).  The main disadvantage of pyrolusite filters is the 

relative high specific gravity (4.0) of the media.  The high specific gravity requires a 

high backwash flow to fluidize filter beds and provide necessary cleaning (Casale, M., 

and F. 187). 

Zeolite softening removes Mn(II) from water through cationic exchange.  

Backwashing zeolite media is typically done with brine solution prepared from sodium 

chloride (NaCl) to remove manganese and other cations (Casale, M., and F. 187).   

Granular activated carbon (GAC) filters have shown to remove up to 2.55 mg of 

Mn per gram of GAC (Jusoh et al. 347-353).  Another treatment process that was able to 

achieve above 95% Mn(II) removal included; polyelectrolytes at 8.5 pH, a 0.5 

stoichiometric dose of potassium permanganate (KMnO4), and 35 µm membrane 

filtration (Roccaro et al. 205-214).  The disadvantages of this process were long holding 

times and high cost of membrane filtration; potassium permanganate is an expensive 

oxidant and may act as a skin irritant.   

I.2.4 Lime softening 

Lime (CaO) and soda ash (Na2CO3) are typically used as softening agents in 

water treatment systems.  They are also useful in removing Mn because they can 
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increase pH to the point where Mn becomes insoluble (pH > 9.5) (Casale, M., and F. 

187).  Studies have shown Mn removal between 98 and 100% can be achieved at pH 

between 9.4 and 9.8.  Due to the relatively high cost of using lime for Mn removal, this 

technique is not typically used unless water softening is also required (Casale, M., and F. 

187). 

I.2.5 Sequestering agents 

Sequestering agents do not remove Mn from drinking water but rather control the 

negative aesthetic affects by preventing oxidation.  Use of sequestering agents is usually 

limited to very low levels and for sequestering to be effective, manganese must be in the 

bicarbonate form (Casale, M., and F. 187).  Typical sequestering agents are sodium 

silicate, trisodium phosphate, hexametaphosphate, zinc orthophosphate, and 

polyphosphates.  Sequestering agents have shown to lose dispersing properties in water 

that is heated or boiled.  Polyphosphates use should be limited because it has shown to 

increase bacterial regrowth and have adverse effects on phosphate levels (Casale, M., 

and F. 187). 

I.2.6 In situ treatment 

In situ aeration techniques are used for ground water sources.  Injection of 

aerated water near pumping sites in groundwater sources has shown to reduce Mn(II) at 

several drinking water treatment facilities (Casale, M., and F. 187).   However, some 

studies suggest that aeration of certain reservoirs does not reduce Mn(II) and 

microorganisms are the source of most Mn oxidation (Casale, M., and F. 187).  
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I.2.7 Biological Mn oxidation 

Biological oxidation of manganese has the potential to be a cost effective and 

safe means of removing manganese from wastewater and drinking water when coupled 

with common filtration or clarification methods.  Although biological treatment 

processes have not been widely utilized in drinking water treatment processes, they have 

proven to be excellent for wastewater treatment.  Mn(II) oxidizing bacteria have shown 

to increase oxidation rates between three and five orders of magnitude.  Biological 

oxidation of manganese is a viable alternative for Mn removal due to increased oxidation 

rates (Diem and Stumm 1571-1573; Diem and Stumm 1571-1573; Tekerlekopoulou, I., 

and D. 292-301).  Manganese oxidation can be carried out by a wide variety of bacteria.   

Bacterial genera that can oxidize manganese are Leptothrix, Crenotrix, Bacillus, SG-1, 

Hyphomicrobium, Metallogenium, Siderocapsa, Siderocystis, and Pseudomonas 

(Mouchet 158-167; Gouzinis et al. 2442-2450).  In this research project Pseudomonas 

putida was used to oxidize Mn(II) in bench scale trickling filters.  Pseudomonas putida 

is a rod-shaped gram negative bacterium capable of oxidizing Mn(II).  The strains 

capable of oxidizing Mn(II) are MnB1 and GB-1 (Tebo et al. 287-328; Brouwers et al. 

1762-1768).  Environmental conditions best suited for growth are 30oC and pH 6.8 

(Yang and Humphrey 1211-1235; Hill and R. 1599-1615).  

Biologically produced manganese dioxide precipitates have shown to have more 

porous structures with greater surface areas than manganese produced using physical and 

chemical processes. (Casale, M., and F. 187)(Ulrich ).  The most common structure of 

biogenic Mn oxides formed by Pseudomonas putida is hexagonal phyllomanganate.  
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Biogenic Mn structures have high specific surface areas that ranges between 98 and 224 

m2/g, two to four times greater than synthetic Mn oxides.  This means heavy metals can 

be strongly adsorbed to the biogenic Mn oxides (Villalobos et al. 2649-2662).  This may 

promote additional autocatalytic Mn oxidation and water treatment.   

I.3 Research objectives 

The objective of the research was to inoculate porous media with Pseudomonas 

putida to significantly increase Mn oxidation rates and lower filter start up times. 

Mathematical models were developed to describe the biological manganese oxidation 

and growth of Pseudomonas putida in the trickling filters. 

In the following chapter methods used to inoculate the trickling filters with 

Pseudomonas putida and measure Mn(II) oxidation will be described first. Results from 

the representative filter studies and modeling the Mn(II) removal and Pseudomonas 

putida growth will be presented then.  
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CHAPTER II 

BIOCHEMICAL MANGANESE REMOVAL IN TRICKLING 

FILTERS USING PSEUDOMONAS PUTIDA 

II. 1 Introduction

Removal of manganese (Mn) from water can be an expensive and time 

consuming process.  Oxidizing Mn(II) to Mn(IV), the precipitate form of Mn, is 

generally accomplished using common chemical oxidants such as chlorine.  It can take 

up to three hours to oxidize 1 mg/L to 0.7 mg/L of Mn(II) at neutral pH with a chlorine 

dosage four times greater than stoichiometric requirements (Casale, M., and F. 187).  

Biological oxidation of Mn may be a viable alternative to conventional treatment 

methods. Studies have shown that down flow homogenous biological filters are best 

suited for Mn removal (Yang et al. 1447-1454).  Costs can be optimized by changing 

nutrient inputs, such as oxygen and carbon sources, or the type of microorganisms, such 

as Pseudomonas, Leptothrix, Bacillus, Crenotrix, Hyphomicrobium, Metallogenium, 

Siderocapsa, and Sidercystis.  Active biofilms in attached growth biological filters such 

as trickling filters can take several months to establish although some inoculation 

procedures have reduced start up time to only two weeks (Stembal et al. 509-518). 

Trickling filters have been closely examined for use as biological filters, because 

the large pore spaces provide aerobic conditions throughout the filter.  Trickling filters 

have large ventilation ports near the bottom of the filters; the ventilation ports usually 

provide sufficient air supply from natural wind forces (Environmental Protection Agency 
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7).  This means biological manganese filters will not require large energy inputs to 

maintain aerobic conditions, which will promote Mn oxidation. 

Trickling filters are “aerobic treatment systems that utilize microorganisms attached 

to a medium to remove organic matter from wastewater” (Environmental Protection 

Agency 7).  Typical trickling filter process flow diagrams can be seen in Figure 1 

(Tchobanoglous, F., and D. 887-981).  Trickling filter medium is comprised of rocks or 

plastic packing material that is either cross-flow or vertical-flow in design.  These 

designs are considered non-submerged fixed-film biological reactors, and are typically 

either tertiary or secondary treatment processes.  Advantages of trickling filters 

compared to other biological treatment processes, such as activated sludge, are as 

follows (Tchobanoglous, F., and D. 887-981): 

 Less energy required

 Simple operation with no issues of mixed liquor inventory control and sludge

wasting

 No problems of bulking sludge in secondary clarifiers

 Better sludge thickening properties

 Less equipment maintenance

 Better recovery from shock

Disadvantages of trickling filters are (Tchobanoglous, F., and D. 887-981): 

 Lower effluent quality in terms of BOD and TSS

 Greater temperature sensitivity

 Odor

 Uncontrolled solids sloughing events
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Figure 1.  Common trickling filter process flow diagrams (Tchobanoglous, F., and D. 

887-981) 

Filter medium depth ranges from 0.9 to 2.5 m for rock media and 3 to 12 m for 

plastic media.  Biofilm, typically 0.1 to 0.2 mm thick, forms over several months as 

wastewater continuously flows over the trickling filter medium (Environmental 

Protection Agency 7; Tchobanoglous, F., and D. 887-981).  Wastewater treatment occurs 

mainly due to microbial degradation of target substrates as it flows over the biofilm.  

Biofilm thickness is greatest at the top of trickling filters and is maintained around 0.2 

mm due to hydraulic shearing of water flow.  

To ensure low cost and efficient water treatment, filter depth should be 

optimized.  A pilot scale study showed that a filter depth of approximately 0.8 m is 

needed to decrease 1.06 mg/L of feed Mn to below 0.05 mg/L in the effluent (Stembal et 

Legend 

S – Sludge return 

R – Recycle flow 

- Primary clarifier 

- Secondary 
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al. 327-335).  As filtration rates increased from 12 m/hr to 24 m/hr less Mn was removed 

from the water effluent.   

Biological filtration have shown to have Mn removal rates between 60% and 

95% using mixed cultures (Gouzinis et al. 2442-2450; Stembal et al. 327-335; Pacini, 

A., and G. 4463-4475).  Those studies typically had long startup times ranging between 

several weeks and months to treat water with Mn concentration typically between 0.5 

mg/L and 1 mg/L.  According to the biological filtration studies mentioned above a Mn 

removal rate of 95% is needed to meet the EPA’s Secondary Maximum Contaminant 

Level (0.05 mg/L) for most Mn impaired water bodies. Pseudomonas putida was 

inoculated to filter media to facilitate Mn oxidation under neutral pH. Filter set up, Mn 

oxidation studies under laboratory conditions, and modeling Mn oxidation and microbial 

growth are described in this chapter.  

II.2 Materials and methods 

Initially the filter was designed as a rapid sand filter using a 0.60 m (2 ft) long PVC 

pipe 10.16 cm (4 in) in diameter.  The 0.60 m long PVC pipe was too cumbersome and 

difficult to handle for a bench scale project and was replaced using a repurposed methane 

filter.  The repurposed methane filter had difficulty draining properly and was also 

determined to be too large.  It was then decided that large sand filters may not provide 

enough aeration for Mn to be oxidized.  The filter was soon redesigned to be a trickling 

filter that used pea pebbles, greater than 0.5 cm in diameter, as a solid media and a 0.30 m 

(1 ft) long PVC pipe 5.08 cm (2 in) inches in diameter.  A mesh screen was stretched 
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across the bottom of the PVC pipe to keep the solid media in place.  There was anecdotal 

evidence from the preliminary experiments that indicated that consistent source of light 

aided the manganese oxidizing bacterium, Pseudomonas putida, to oxidize Mn(II). So, the 

PVC trickling filters were replaced with glass columns of 4 cm diameter which also helped 

to allow observation of manganese oxidation without disturbing the solid media.    During 

preliminary studies, an increase in Mn oxidation was observed in filters inoculated with 

Pseudomonas putida even though the biofilms were not well established. .  This led to the 

addition of clear glass beads as the solid media in lieu of pea pebbles.  Pea pebbles were 

kept at the bottom of the column to prevent the glass beads from leaving.  Three more 

preliminary trials showed increased Mn oxidation and biofilm formation in comparison to 

previous trials.  The dark brown biofilms and oxidized manganese oxides were forming 

on the surface of the solid media within 48 hours. 

The final design consisted of two bench scale trickling filters.  One of the filters 

was inoculated with Pseudomonas putida the other filter was used as a control and was 

not inoculated.  The trickling filters consisted of 500 mL glass dispensing burets, 400 mm 

high and with 4 cm internal diameters.  The support media consisted of a top layer with 

130 mL (10 cm depth) of solid glass beads, 3 to 5 mm in diameter, and a bottom layer 

with 50 mL (four centimeter depth) of pea pebbles with a mean diameter of 7.5 mm.  The 

porosity (θ) of the glass bead layer was 0.62 and the porosity of the pebble layer was 0.45.  

Liquid media was pumped through the system using two Masterflex L/S peristaltic pumps.  

The liquid media was stored in a 500 mL shake flask at the outlet of the filter.  The liquid 

media in the shake flask was then recirculated through the trickling filter.  pH 
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measurements were carried out using a Beckman Coulter pHi 570 pH meter.  pH 

measurements were carried out daily to ensure the liquid media pH stayed near neutral 

pH.  A Thermo Scientific Genesys 10S UV – Vis spectrophotometer was used to monitor 

bacterial growth and Mn(II) concentration. 

II.2.1 Pseudomonas putida growth and trickling filter inoculation process.  

 Pseudomonas putida cultures were preserved in glycerol stock and stored in a 

freezer at -20˚C.  The maintenance cultures were later thawed in a 4oC incubator several 

hours before an enrichment culture was created.  An enrichment culture was prepared by 

adding 0.1 mL of glycerol stock inoculated with Pseudomonas putida to100 mL of Tebo 

liquid medium (refer to Table 1 and 2) in multiple 250 mL shake flasks.  A MnCl2 

concentration of 8 × 10-4 M was added to each shake flask.  The enrichment cultures that 

showed signs of Mn(II) oxidation between 24 and 120 hours  were used to inoculate the 

trickling filters.  The trickling filter was inoculated with P. putida by adding 1 mL of the 

enrichment culture directly to the solid media of a filter and one milliliter of the 

enrichment culture to the shake flask containing the liquid medium being continuously 

pumped through the trickling filter. This was done every hour for up to four hours and 

then absorbance measurements were taken. 

 



16 

 

Yeast extract 0.5 g/L 

Casamino acids 0.5 g/L 

Glucose 1.0 g/L 

CalCl2 2x10-3 M 

MgSO4 3.3x10-2 M 

FeCl3 3.7x10-4 M 

Trace element 

solution 
1.0 mL/L 

 

 

Table 2. Composition of trace element solution in Tebo liquid growth medium.  All 

components were mixed into one liter of deionized water then autoclaved at 120oC for 

20 minutes (Villalobos et al. 2649-2662). 

Chemical Concentration 

CuSO4 • 

5H2O 
10 mg/L 

ZnSO4 • 

7H2O 
44 mg/L 

CoCl2 • 6H2O 20 mg/L 

Na2MoO4 • 

2H2O 
13 mg/L 

  

Tebo liquid growth medium (Table 1) was pumped into both the trickling filters 

and recycled at a rate of 100 mL/min for 48 hours in a continuous down flow operation 

(figure 2).  A 48 hour recycle time was chosen because it was seen from preliminary trials 

that 48 hours was the minimum amount of time taken for Pseudomonas putida to attach 

to the support media and grow enough to form a visible biofilm.  Both filters were open 

to the air.  One filter was inoculated with Pseudomonas putida, while the other was not 

Table 1.  Composition of Tebo liquid growth medium (Villalobos et al. 2649-2662) for 

inoculating trickling filters with Pseudomonas putida.  All compounds were mixed into 

one liter of deionized water then autoclaved at 120oC for 20 minutes. 

Chemical Concentration 
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inoculated with any bacteria.  Every hour the absorbance for three 1 mL samples of the 

liquid growth media in each trickling filter was measured with a spectrophotometer set at 

600 nm wavelength along a 1 cm light path.  This was done to monitor the growth and 

attachment of bacteria in both trickling filters.  

Figure 2. Setup for inoculating trickling filter with Pseudomonas putida and a control 

trickling filter with airborne bacteria.  The filter on the left (1) was inoculated with 

Pseudomonas putida and fed Tebo liquid growth medium for 48 hours while open to the 

air.  The filter on the right (2) was a control and was not inoculated with any specific 

bacteria but was open to the air and fed Tebo liquid growth medium for 48 hours. 
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Tebo liquid growth medium for Pseudomonas putida was used to stimulate 

bacterial growth in the trickling filters (Villalobos et al. 2649-2662).  Normally Tebo 

growth medium is prepared by adding 8 × 10-4 M MnCl2 to the solution; however this was 

not added during the inoculation process, but was added later after the Pseudomonas 

putida grew in the trickling filter for 48 hours. 

II.2.2 Determination of Manganese in trickling filter effluent.

Deionized water with feed manganese concentration of 8 × 10-4  M was pumped 

into the trickling filters at a rate of 0.25 mL/min.  Simultaneously, 250 mL of Tebo 

liquid growth media was fed to the filter at rate of 100 mL/min and the filter effluent was 

collected in the feed tank and recycled (Figure 3).  Every hour the concentration of Mn 

in the effluent should increase by 4.8 × 10-8  M, if no Mn is removed.  Three 10 mL 

samples from the Tebo media were taken every two hours from each trickling filter to 

measure the Mn(II) concentration.  The Mn(II) concentration was measured using the 

persulfate method (American Water Works Association and American Public Health 

Association ).  The experiment was repeated three times.  After the final trial was 

completed, the support media was analyzed using scanning electron microscope (SEM) 

imaging.  The SEM preparation and imaging was carried out by Dr. Vaddiraju’s 

laboratory.  The SEM imaging was done to characterize the Mn in the trickling filters. 
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Figure 3. Flow diagram for Mn removal and sample collection in inoculated and control 

bench scale trickling filters.  The figure above shows how samples were taken to 

measure Mn from the effluent of the filter inoculated with Pseudomonas putida (1) and 

the control filter (2). 

The persulfate method for measuring Mn(II) concentration was done as follows.  

First a sample was diluted or concentrated to 90 mL.  Next, one drop of H2O2 and 5 mL 

of special reagent was added to the solution followed by the addition of 1 g of 

(NH4)2S2O8. Then the solution was boiled for 1 min.  This solution was diluted to 100 

mL after cooling down for 1 min and analyzed using a spectrophotometer set at 525 nm 

along a one centimeter light path.  The special reagent was prepared by dissolving 75g 

HgSO4 in 400 mL of HNO3 concentrate and 200 mL DI water.  Next 200 mL of 85% 

H3PO4 and 35 mg AgNO3 was added to the solution.  The solution was diluted to one 

liter with DI water then cooled. 
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A standard curve for the persulfate method was prepared using known 

concentrations of permanganate between 0 and 1500 µg/100 mL (Figure 4).  The 

standard curve was created by analyzing known concentration of Mn using a Thermo 

Scientific Genesys 10S UV – Vis spectrophotometer.  A linear relationship was observed 

between absorbance and Mn concentration (Figure 4) and Mn concentration was 

determined by using the following equation (r2 = 0.9913): 

𝐴𝑏𝑠𝑜𝑟𝑏𝑎𝑛𝑐𝑒 = 0.0004 ∗ 𝑀𝑛 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 

Figure 4.  Determining Mn concentration by persulfate method.  The standard curve was 

developed for measuring Mn(II) in 100 mL of sample using the persulfate method  
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II.2.3 Modeling manganese removal using advective dispersive equations.

The one dimensional advective-dispersive equation (ADE) describes chemical 

transport under changing fluid flow conditions (Genuchten and W. 151).  This equation 

can be used to simulate Mn transport in the filter and determine appropriate filter depth. 

While filter depth is likely the largest factor that affects Mn concentration other 

important factors such as, filtration rate, substrate consumption rate, and the type of solid 

media can also affect the effluent quality.  The following equations describe the 

advective dispersive transport: 

 𝐷
𝜕2𝑆

𝜕𝑥2
− 𝑣

𝜕𝑆

𝜕𝑥
− 𝑅

𝜕𝑆

𝜕𝑡
= 𝜆𝑆 − 𝛾 

Where S is the aqueous phase substrate concentration (µg/L), D is the diffusion 

coefficient (cm2/min), x is the depth (cm), t is time (min), R is the retardation coefficient, 

γ is a zero order Mn production constant (µg/mL·min), and λ is a first order Mn 

consumption constant (1/min): 

The retardation coefficient can be determined using the following equation: 

𝑅 = 1 +  𝜌𝐾/𝜃

𝜃 = 𝑉𝑤𝑎𝑡𝑒𝑟/𝑉𝑡𝑜𝑡𝑎𝑙

Where ρ is the water density, K is the empirical distribution constant, and θ is the 

volumetric water content. 
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Where the diffusion coefficient (D) is approximately equal to the hydrodynamic 

diffusion coefficient (Dlh) and Doaebθ is negligible. 

𝐷 = 𝐷𝑜𝑎𝑒𝑏𝜃 +  𝐷𝑙ℎ

𝐷𝑙ℎ =  𝛼𝑣

The hydrodynamic diffusion coefficient is equal to the Darcy velocity (vD) multiplied by 

the dispersion degree (α), and divided by the volumetric water content (θ). 

𝑣 =  𝑣𝐷/𝜃

An analytical solution for the one dimensional advective dispersive model can be found 

by assuming boundary conditions.  The boundary conditions were determined to be flux-

type and semi-infinite for the trickling filter due to steady state conditions and the 

continuous flow of Mn contaminated water through the filter, where So is the initial 

substrate concentration. 

−𝐷
𝑑𝑆

𝑑𝑥
+ 𝑣𝑆 |𝑥=0 =  𝑣𝑆𝑜 

𝑑𝑆

𝑑𝑋
(∞, 𝑡) = 0 

Zero order production rate (γ) of Mn(II) is assumed to be negligible in this experiment.  

The concentration of Mn(II) at distance (x) in the trickling filter can be found using the 

above boundary conditions as follows: 
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𝑆(𝑥) =
𝛾

𝜆
+

(𝑆𝑜 −
𝛾
𝜆

) 2𝑣

𝑢 + 𝑣
exp (

(𝑣 − 𝑢)𝑥

2𝐷
) 

𝑢 = 𝑣√1 +
4𝜆𝐷

𝑣2

II.3 Results and discussion

II.3.1 Attachment and growth of Pseudomonas putida and airborne bacteria.

Pseudomonas putida was grown for 48 hours attached to the solid media in the 

trickling filter after the first inoculation with the enrichment culture.  The time it took for 

the enrichment culture to show signs of Mn oxidation varied by several days. This may 

be the reason for wide range of growth rates shown later.  The absorbance values 

measured in the reservoir of the Tebo liquid growth media began to decline between five 

and fifteen hours (Figure 5).  It is assumed that between five and fifteen hours is when 

Pseudomonas putida began to attach to the solid media.  After 15 hours the glass beads 

would start to turn a pale yellowish color.  The trickling filters became saturated with 

Pseudomonas putida around 48 hours where stationary phase reached and maximum Mn 

oxidation happened 

In Trial 1 Psuedomonas putida reached maximum growth rate after seven hours. 

The specific growth rate of P. putida was 0.0065 min-1 (doubling time =106 min). 

However, the manganese oxidation was the lowest compared to other tirals showing that 

the oxidation was not dependent on P. putida growth rate. Innoculation time, nutrient 

input, environmental factors, final cell concentration, and the state of the enrichment 
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culture are likely to contribute more to Mn(II) oxidation.  The control trickling filter had 

a similar growth rate to the trickling filter innoculated with Pseudomonas putida.  The 

control trickling filter showed negligible Mn oxidation and biofilm formation (Figure 6). 

The second trial took longer to start up (Figure 5), but resulted in the highest 

Mn(II) oxidation (as seen in Figure 7).  The specific growth rate was found to be 0.0049 

min-1 (doubling time = 140 min).  The control trickling filter had a much slower start up 

and lower Mn oxidation than the trickling filter inoculated with Pseudomonas putida 

(Figure 5).  

The final trial had the fastest start up time and the highest percent reduction of 

Mn(II) (as seen in Figure 5).  The control trickling filter had a much slower startup time 

than the trickling filter inoculated with Pseudomonas putida (Figure 5).  Because there is 

no data during the initial growth phase of third trial, that the specific growth rate was 

estimated to be 0.0057 min-1 (doubling time = 122 min), the average of the previous 

trials.  Negligible amount biofilm was observed in the control filter as well (Figure 8). 
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Figure 5.  Growth and attachment in continuous flow trickling filters inoculated with P. 

putida and airborne bacteria (control). Growth and attachment was accomplished using 

Tebo liquid growth medium. The figure above shows data from trials one (top), two 

(middle), and three (bottom). 
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The growth rate and concentration of ambient bacteria in the control filter varied 

greatly in each trial (Figure 6).  The growth and absorbance of the control filters appears 

to mimic the growth of the respective P. putida filters, despite the fact that there was 

typically more lag time for the control filters to develop biofilm.  The lag time for 

Pseudomonas putida in each experiment varied between zero and eight hours (Figure 5).  

Each inoculated filter appeared to follow the same pattern of initial growth and 

attachment but varied greatly as the inoculation time increased.   

II.3.2 Manganese oxidation and removal from trickling filters. 

  Once the Pseudomonas putida had grown for 48 hours, manganese 

contaminated water with average concentration of 58.69 µg/mL, was pumped through 

each trickling filter at a rate of 0.25 mL/min.  At the same time Tebo liquid growth 

media was still being recirculated through the trickling filter at a rate of 100 mL/min.  

Once Mn concentration in the effluent of the filter inoculated with Pseudomonas putida 

reached steady state feeding was stopped and samples were taken from each filter for 

SEM imaging.  Although the control filter showed signs of Mn oxidation and adsorption 

to the solid media, oxidation in the trickling filter inoculated with Pseudomonas putida 

was obviously much greater due to the large amount of black and brown Mn oxide 

precipitates that formed on the solid media of the trickling filters (Figures 6, 7, 8, and 9).      
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Figure 6.  Mn oxidation progression trial 1.  The progression of Mn oxidation and adsorption to the solid media in two hour 

intervals during the first trial.  The inoculated filter (left) shows signs of Mn oxidation with the brown/black precipitate 

attached to the solid media, while the control filter shows minor signs of Mn oxidation (right).   
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A: 
Hour 0

B: 
Hour 2

C: 
Hour 4

D: 
Hour 6

E: 
Hour 8

F: 
Hour 10

G: 
Hour 12

H: 
Hour 14

Figure 7.  Mn oxidation progression trial 2.  The progression of Mn oxidation and attachment to the solid media 

in two hour intervals during the second trial.  The inoculated filter (left) shows signs of Mn oxidation with the 

brown/black precipitate attached to the solid media, while the control filter shows no signs of Mn oxidation 

(right). 
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Figure   8.  Mn oxidation progression trial 3.  The progression of Mn oxidation and adsorption to the solid media in two hour 

intervals during the third trial.  The inoculated filter (left) shows signs of Mn oxidation with the brown/black precipitate 

attached to the solid media, while the control filter shows no signs of Mn oxidation (right).  Before Mn(II) contaminated water 

was introduced into the system Pseudomonas putida can be seen attached to the solid media as a yellowish color (A).  The 

final figure (F) shows Mn attached to the filter after the system reached steady state, and Mn was being removed from the 

water effluent at the maximum possible rate.   
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Figure 9.  Steady state trickling filter comparison of each experimental trial.  The figure above shows a comparison between 

the first, second, and third (left to right) experiments after the inoculated trickling filters had reached steady state
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During the first experimental trial the Mn(II) concentration in the trickling filter 

inoculated with Pseudomonas putida was significantly lower than the control filter 

(Figure 10).  Although some of the Mn began to oxidize and adsorb to the control filter 

after 10 hours (Figure 6).  It appears that the Pseudomonas putida did not reach its 

maximum growth rate until nine hours during this phase of the experiment (Figure 5).  

This is likely the reason for much higher Mn(II) concentration in the effluent when 

compared to the other two trials (Figure 10).  

The highest decrease in initial Mn(II) concentration was observed during second 

trial (Figure 10).  The control filter showed no signs of biofilm formation (Figure 8) and 

had almost no Mn removal (Figure 10).   

The third trial had the highest Mn percent reduction in the filter inoculated with 

Pseudomonas putida (Table 3) but the total amount of Mn oxidized was less than the 

second trial (Figure 10 and Table 3).   
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Figure 10.   Mn(II) concentration in the effluent of Pseudomonas putida inoculated 

trickling filters  vs. control trickling filters.  Mn(II) concentration in the effluent of the 

inoculated and control trickling filters for the first (top), second (middle), and third 

(bottom) trials. 
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Table 3.  Percent removal of manganese in filters inoculated with P. putida and no 

inoculation. 

Trial # Mn (II) removal percentage (%) 

Filter inoculated 

with P. putida 

Filter with no 

inoculation 

1 38 14 

2 82 13 

3 91 16 

 

 

Control filters had negligible Mn(II) oxidation as compared to filters inoculated 

with P. putida in all trials (Table 3). Manganese removal in control filters can be 

attributed mainly to abiotic and some biotic losses. Previous studies have shown from 

90% to 95% removal of Mn(II) with mixed bacterial cultures using much lower Mn 

concentration than used in this research (Stembal et al. 327-335; Pacini, A., and G. 4463-

4475).  In one of the laboratory studies to achieve 90% removal it took up to eight 

weeks. The removal percentages in P. putida filters were three to six orders of 

magnitude more than control filters (Table 3). This is consistent with other research 

results indicating biological filtration could oxidize Mn between three and six orders of 

magnitude greater than autocatalytic oxidation (Tekerlekopoulou, I., and D. 292-301; 

Tebo S883-S905; Brouwers et al. 1573-1582).  Mn oxidation by Pseudomonas putida 

has proven to be consistently greater than autocatalytic oxidation but the results vary 

dramatically.  It should be noted that autocatalytic oxidation is shown to oxidize Mn 

consistently.  This can be overcome by proper treatment design of biological filtration in 

conjunction with other chemical processes to account for the variability in Mn removal. 
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II.3.3 Statistics.   

A one-tailed t-test with unequal variance was used to determine whether or not 

the concentration of Mn(II) in the effluent of the trickling filter inoculated with 

Pseudomonas putida was significantly lower than the control filter.  It was found that the 

concentration of Mn(II) in each trial was significantly lower in the Pseudomonas filter at 

α = 0.05 (Table 4).  Although trial two had the most significant difference between the 

Mn(II) concentration in the effluent, trial three had the greatest percent reduction of 

Mn(II) overall.  The null hypothesis was that the concentration of Mn(II) in the effluent 

of the trickling filter inoculated with Pseudomonas putida is significantly greater than or 

equal to the control filter.  The alternate hypothesis was the concentration of the Mn(II) 

in the effluent of the trickling filter inoculated with Pseudomonas putida is significantly 

less than  the control filter.  Statistics on each trial results rejected the null hypothesis 

and supported the alternate hypothesis. 

 

Table 4. t-test to determine if there is a significant difference between inoculated and 

control trickling filters effluent Mn(II) concentrations.  p-values comparing Mn(II) 

concentration in the effluent of a filter inoculated with Pseudomonas putida and a 

control filter. 

Trial # p-value df Significantly lower 

1 0.048 6 Yes 

2 0.002 7 Yes 

3 0.008 5 Yes 

A two tailed t-test was used to determine if the Mn(II) concentration in the 

effluent of the inoculated filters is significantly different between each run (Table 5).  It 

was found that each trial was significantly different than the other trials at α = 0.05.  This 
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may be caused by different environments within the inoculated filters, different P. putida 

cell concentrations, or Pseudomonas putida cultures that had adapted to the presence of 

Mn differently in each trial.  Each comparison rejected the null hypothesis, the Mn(II) 

concentration was significantly identical when comparing trials one, two, and three.  The 

alternate hypothesis claimed each trial was significantly different when compared to 

each other. 

 

Table 5 - t-test to determine if the effluent Mn(II) concentrations in each experimental 

trial in the inoculated filters are significantly different.  The p-values below show that 

the Mn(II) concentration found in the effluent of the inoculated filters is significantly 

different when comparing each experimental trial. 

Trial 

comparison p-value df Significantly different 

1 and 2 0.008 6 Yes 

1 and 3 0.004 7 Yes 

2 and 3 0.020 5 Yes 

 

 

II.3.4 Characterizing biogenic manganese oxides in trickling filters using scanning 

electron microscope images.   

Scanning electron microscope (SEM) images of Mn oxides can indicate the 

source of Mn oxidation.  The bright crystalline structure of biogenic Mn oxides adsorbed 

to the surface of the glass beads in the Pseudomonas putida filter was much more 

pronounced in the SEM images when compared to the surface of the glass beads in the 
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control filter (Figure 11).  This indicates higher amount of Mn oxidized and adsorbed in 

the inoculated filters as compared to control filters.  The biogenic oxidized Mn appears 

to be far more porous and jagged when compared to other SEM images of Mn(IV) that 

were oxidized chemically (Hu et al. 308-313).  The increased porosity of biogenic Mn 

oxides has a much larger specific surface area than that of chemically oxidized Mn, 

making it a stronger oxidant.  The greater oxidation potential of the biogenic Mn oxides 

that accumulate around the cell membrane of Pseudomonas putida (not distinguishable 

in the SEM pictures) may protect the cell from other harmful chemicals. 

 

 

Figure 11. SEM image comparison of Mn particles on the solid media of inoculated and 

control trickling filters.  SEM pictures showing a high concentration of crystalline Mn 

oxides adsorbed to glass beads of the Pseudomonas putida filter (left) compared to 

relatively little Mn oxidation on the solid media of the control filter (right). 
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II.3.5 Advective dispersive and first order kinetic models for Mn(II) effluent 

concentration in trickling filters inoculated with Pseudomonas putida.   

CXTFIT was used to create a one dimensional advective-dispersive model 

(ADE) for each trial.  CXTFIT is a computer program for estimating solute 

concentrations and modeling solute transport (Tang et al. 1200).  The predicted 

concentration of Mn in the effluent of the trickling filter was found using CXTFIT and 

assuming intermediary decay coefficients and retardation factors equal to one.  The final 

decay coefficients and retardation factors were found by minimizing the average squared 

difference between the observed and predicted data.  An overall model was created by 

using the average values of the decay coefficient and the retardation factor obtained by 

three trials.  The average decay coefficient for Mn(II) was determined to be 3.29 min-1 

and the average retardation factor was determined to be 282.86.  The retardation factor is 

comparable to other transport research results dealing with transport of oxidizing agents 

through well-developed biofilms (Hu et al. 936-941; Davison, Pitts, and Stewart 2920-

2927).  The half-life for biological manganese oxidation estimated using the decay 

coefficient is much lower than previous research (Katsoyiannis and A. 1922-1932).  

Advection dispersion models for estimating Mn concentration were created using the 

following assumptions: 

 Porosity (∅) = volumetric water content  

 Dispersivity (α) = 0.5 

 Doaeb∅ negligible  
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The distance (x) to which Mn contaminated water needed to flow through in the 

trickling filter was estimated to be 10 cm under the laboratory conditions.  The advection 

velocity (v) and diffusion coefficient (D) was determined to be 20.98 cm/min and 10.49 

cm2/min respectively, using the equations shown in the Materials and Methods section. 

The advection dispersion model fitted using data from the Pseudomonas putida 

inoculated filter collected in first trial resulted in a decay coefficient of 1.01 min-1 and a 

retardation factor of 1 (Figure 12 and Table 6).  The advection dispersion model fitted 

using data from the non-inoculated filter collected in first trial resulted in a decay 

coefficient of 0.36 min-1 and a retardation factor of 1 (Figure 13 and Table 6).  An 

average of 38% of Mn was removed during this trial while the AD model predicted an 

average removal of 38% of Mn.  This was the lowest percent removal of Mn from the 

effluent water (Table 3).  Trial one also had the smallest decrease for observed and 

predicted Mn in the effluent.  The amount of observed and predicted Mn that was 

oxidized was 5.23 µg/mL and 5.22 µg/mL respectively.  The high concentration of Mn 

in the effluent is due to the low removal rate in the first 6 hours of measurement.  

Increasing the inoculation period would likely improve the removal rates.   

The model for the second trial had a decay coefficient of 3.40 min-1 and a 

retardation factor of 597.07 (Figure 12 and Table 6).  The advection dispersion model 

fitted using data from the non-inoculated filter collected in second trial resulted in a 

decay coefficient of 0.31 min-1 and a retardation factor of 1 (Figure 13 and Table 6).  The 

average observed and predicted percent removal of Mn was 81.78% and 82.81% 

respectively.  Trial two had the largest decrease for observed and predicted Mn 
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concentration in the effluent.  Observed and predicted Mn concentration was decreased 

by 7.59 µg/mL and 7.67 µg/mL respectively.   

The decay coefficient was 5.46 min-1 and a retardation factor of 250.52 for trial 

three (Figure 12 and Table 6).  The advection dispersion model fitted using data from the 

non-inoculated filter collected in third trial resulted in a decay coefficient of 0.39 min-1 

and a retardation factor of 1 (Figure 13 and Table 6).    The observed and predicted 

percent Mn removal were 90.58% and 90.65% respectively (Figure12).  The observed 

and predicted Mn concentrations were both decreased by 6.17 µg/mL. 
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Figure 12.  Predicted vs. observed Mn(II) concentrations in Pseudomonas putida 

inoculated trickling filters using an advection dispersion model.  Comparison between 

the predicted model and the observed data for Mn(II) concentration in the effluent of the 

Pseudomonas putida trickling filter for the first (top), second (middle), and third 

(bottom) experiments, with r2 values. 
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Figure 13.  Predicted vs. observed Mn(II) concentrations in control trickling filters using 

an advection dispersion model.  Comparison between the predicted model and the 

observed data for Mn(II) concentration in the effluent of the control trickling filter for 

the first (top), second (middle), and third (bottom) experiments, with r2 values. 
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Table 6.  Decay coefficients and retardation factors for inoculated and non-inoculated 

trickling filters. 

Trial 
Inoculated 

decay coefficients 

Non-
inoculated 

decay 
coefficients 

Inoculated 
retardation factors 

Non-
inoculated 
retardation 

factors 

1 1.01 0.36 1.00 1.00 

2 3.40 0.31 597.07 1.00 

3 5.46 0.39 250.52 1.00 

average 3.29 0.35 282.86 1.00 

 

 

The decay coefficients and the retardation factors listed above were averaged to 

create a model to predict Mn removal from Pseudomonas putida inoculated filters and 

non-inoculated filters using the ADE (Figure 14 and Table 6).  In the modeled 

Pseudomonas putida inoculated filters the average values for the decay coefficient and 

retardation factor were 3.30 min-1 and 282.86, respectively assuming an initial influent 

concentration 7.16 µg/mL.  In the modeled non-inoculated filters the average values for 

the decay coefficient and retardation factor were 0.35 min-1 and 1.  It was noted that an 

increase of 100’s or 1000’s was needed for the retardation factor to make a small but 

noticeable difference in the Mn Concentration.  The retardation factors found using 

CXTFIT have a noticeable effect on the predicted Mn concentration during the first 6 

hours of operation, but had a negligible effect on the concentration of Mn in the effluent 

of the trickling filters afterwards.  The predicted Mn concentration is mostly influenced 

by the decay coefficient.  A retardation factor of 1 can be assumed when using the ADE, 
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which also implies Mn oxidation in both inoculated and non-inoculated trickling filters 

follow first order kinetics. 

 

Figure 14.  Advection dispersion model to predict Mn(II) concentrations in inoculated 

and non-inoculated trickling filters effluents.  ADE models for inoculated and non-

inoculated trickling filters using the averaged decay coefficients and retardation factors. 

 

Because Mn was introduced to the filter as step input, a flux type boundary 
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assumed for the trickling filter.  These boundary conditions allow for the following 

analytical solution: 

𝑆(𝑥) =
𝛾

𝜆
+

(𝑆𝑜 −
𝛾
𝜆

) 2𝑣

𝑢 + 𝑣
exp (

(𝑣 − 𝑢)𝑥

2𝐷
) 

𝑢 = 𝑣√(1 +
4𝜆𝐷

𝑣2
) 

Using the above analytical solution with the average decay coefficient (3.30   

min-1) the Mn concentration at varying filter depths can be determined (Figure 16).  The 

trickling filters had support media depths of approximately 10 cm of glass beads and 4 

cm of pea pebbles.  There was no visible manganese precipitated and coated on pea 

pebbles (Figure 6, 7, 8, and 9); so the support media depth of the trickling filter was 

assumed to be10 cm.  According to the ADE model, a trickling filter with 10 cm of solid 

media with a continuous Mn(II) input of approximately 10 µg/mL at 0.25 mL/min will 

have a bulk  effluent Mn(II) concentration of 2.36 mg/L (Figure 15).  The AD model 

predicts an effluent Mn concentration in a 10 cm trickling filter that is similar to the 

effluent Mn concentration from trial two, but the actual removal rates in trials two and 

three (Table 3) indicated the ADE may underestimate the Mn concentration.   
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Figure 15.  Bench Scale Trickling Filter ADE: semi-infinite, continuous flow.  

Theoretical Mn concentration at different depths for a bench scale tricking filter with 

influent Mn concentration of 10 µg/mL and advection velocity of 20.98 cm/ min.   
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similar flow rates and influent Mn concentration required filter depths of approximately 

0.8 m to achieve the same level of removal (Stembal et al. 327-335).  This indicates that 

trickling filters inoculated with Pseudomonas putida may be much more efficient than 

mixed culture biological filters.   

 

 

Figure 16.  Full Scale Trickling filter ADE: semi-infinite, continuous flow.   Theoretical 

Mn concentration at different depths for a full scale tricking filter with influent Mn 

concentration of one milligram per liter and advection velocity of 12.58 m/hr.   
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Mn oxidation was found to follow first order decay kinetics so the half-life could 

be found using the following equation:  

𝐻𝑎𝑙𝑓 𝐿𝑖𝑓𝑒 =
ln(2)

λ
 

The half-life for biochemical Mn oxidation in trickling filters inoculated with 

Pseudomonas putida was determined to be 0.225 min.  The Mn oxidation rate was found 

to be 17.7 times faster in Pseudomonas putida inoculated trickling filters than a similar 

study that utilized Leptothrix ochracea and Gallionella ferruginea in a two stage up flow 

fixed-bed filter to remove Mn from groundwater sources (Katsoyiannis and A. 1922-

1932).  This shows that Pseudomonas putida inoculated filters have potential for 

increased Mn(II) oxidation rates in comparison to biological filters that utilize other Mn 

oxidizing bacteria and mixed cultures. 

II.4 Conclusions  

The startup time for trickling filters inoculated with Pseudomonas putida was 

only 48 hours, which is much less than typical biological filters currently in use.  Bench 

scale trickling filters inoculated with Pseudomonas putida have been shown to remove 

up to 90% of Mn(II) from the influent  water resulting in six times greater removal rates 

than well aerated trickling filters inoculated with only ambient bacteria.  The biogenic 

Mn oxides produced during the process appears to be very porous and have jagged 

shapes according to the SEM images.  A fate and transport model of the Mn(II) in the 

Pseudomonas putida inoculated filters was formulated  using a one dimensional 

advective dispersive equation.  The decay coefficient for the ADE model was 
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determined to be 3.30 min-1.  The retardation factor was determined to be negligible (1).  

The bench scale experimental results using P. putida inoculated trickling filters showed 

much higher Mn(II) removal rates than mixed culture biological filters.   
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CHAPTER III  

SUMMARY AND RECOMMENDATIONS 

Trickling filters inoculated with Pseudomonas putida had significantly increased 

Mn(II) oxidation rates when compared to well aerated trickling filters exposed to 

ambient conditions under laboratory conditions.  The time it took to achieve Mn removal 

of up to 90% using Pseudomonas putida was only 48 hours.  A one-dimensional 

advective dispersive equation was used to simulate Mn removal in the inoculated filters.  

The ADE model predicted an average Mn removal rate of 72% in a bench scale trickling 

filter with a depth of 10 cm.  The model also predicted full scale trickling filters with a 

solid media depth of 280 cm and an advection velocity of 12.58 m/hr can reduce Mn at a 

concentration of 1 mg/L to below 0.05 mg/L. 

Although 48 hours appeared to be a sufficient startup time, the actual inoculation 

period should be delegated to the operators’ best judgment due to the large variability in 

growth and attachment seen in the inoculation stage of the experiment.  Forty-eight 

hours is a short startup time compared to other inoculation procedures.  Additional 

research should be conducted to see if a more accurate model can be created to simulate 

and predict fate and transport of Mn(II) in porous media.  Possible alternative models 

such as the non-equilibrium two-region mobile/immobile model, or the stochastic-

convective transport model may be better suited for analysis in some cases.  Further 

studies are required to assess the feasibility of inoculating other types of biological filters 

with Pseudomonas putida such as rapid sand filters for removing Mn from drinking 
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water.  Further studies involving different filter configurations, flow rates, initial Mn(II) 

concentrations, and nutrient inputs should be conducted before considering biological 

oxidation using P. putida for full scale operation.  Obtaining consistent Mn(II) oxidation 

rates in different filter set up while using P. putida is a prerequisite for large scale 

implementation of the process.  The effects of long term operation are unknown, but the 

process may still be used during filter startup to treat Mn contaminated water for short 

periods of time while uniform biofilm layers are established. 
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