182 research outputs found

    An online digital archive of magnetograms from 1846 to 1987

    Get PDF
    The magnetic measurements from current UK observatories, together with those from their historical predecessors, provide some of the longest running continuous sets of geophysical observations in the world. A campaign to capture high quality digital images of >300,000 analogue magnetograms (front and back) was completed in 2013, with every single image now available to search, view and download from the on-line archive at www.bgs.ac.uk/data/magnetograms. In parallel with the capture of the magnetograms, the related published yearbooks were scanned and are available online as PDF documents at www.geomag.bgs.ac.uk/data_service/data/yearbooks/yearbooks.html. This work has helped to ensure that these valuable long-term data sets are not lost, irrespective of what may happen in the future to the original photographic paper records. The additional benefit of immediate worldwide access to the data contained within these historic documents has also been established. In this paper we present the BGS OpenGeoscience service, which the magnetogram image archive forms part of. We also show some results of on-going work to acquire digital data from the images and the yearbooks. We discuss past and potential future use of the data for scientific research, such as space weather studies of the magnetograms during the period of the Carrington storm and studies into the homogeneity of long term geomagnetic activity indices that are used in space climate research

    New Black Hole Solutions in Brans-Dicke Theory of Gravity

    Get PDF
    Existence check of non-trivial, stationary axisymmetric black hole solutions in Brans-Dicke theory of gravity in different direction from those of Penrose, Thorne and Dykla, and Hawking is performed. Namely, working directly with the known explicit spacetime solutions in Brans-Dicke theory, it is found that non-trivial Kerr-Newman-type black hole solutions different from general relativistic solutions could occur for the generic Brans-Dicke parameter values -5/2\leq \omega <-3/2. Finally, issues like whether these new black holes carry scalar hair and can really arise in nature and if they can, what the associated physical implications would be are discussed carefully.Comment: 20 pages, no figure, Revtex, version to appear in Phys. Rev.

    Special Lagrangian cones with higher genus links

    Full text link
    For every odd natural number g=2d+1 we prove the existence of a countably infinite family of special Lagrangian cones in C^3 over a closed Riemann surface of genus g, using a geometric PDE gluing method.Comment: 48 page

    An algebraic SU(1,1) solution for the relativistic hydrogen atom

    Full text link
    The bound eigenfunctions and spectrum of a Dirac hydrogen atom are found taking advantage of the SU(1,1)SU(1, 1) Lie algebra in which the radial part of the problem can be expressed. For defining the algebra we need to add to the description an additional angular variable playing essentially the role of a phase. The operators spanning the algebra are used for defining ladder operators for the radial eigenfunctions of the relativistic hydrogen atom and for evaluating its energy spectrum. The status of the Johnson-Lippman operator in this algebra is also investigated.Comment: to appear in Physics Letters A (2005). We corrected a misprint in page 7, in the paragraph baggining with "With the value of ..." the ground state should be |\lambda, \lambda>, not |\lambda, \lambda+1

    Energetics of the Einstein-Rosen spacetime

    Full text link
    A study covering some aspects of the Einstein--Rosen metric is presented. The electric and magnetic parts of the Weyl tensor are calculated. It is shown that there are no purely magnetic E--R spacetimes, and also that a purely electric E--R spacetime is necessarily static. The geodesics equations are found and circular ones are analyzed in detail. The super--Poynting and the ``Lagrangian'' Poynting vectors are calculated and their expressions are found for two specific examples. It is shown that for a pulse--type solution, both expressions describe an inward radially directed flow of energy, far behind the wave front. The physical significance of such an effect is discussed.Comment: 19 pages Latex.References added and updated.To appear in Int.J.Theor.Phy

    Recent Advances in Understanding Particle Acceleration Processes in Solar Flares

    Full text link
    We review basic theoretical concepts in particle acceleration, with particular emphasis on processes likely to occur in regions of magnetic reconnection. Several new developments are discussed, including detailed studies of reconnection in three-dimensional magnetic field configurations (e.g., current sheets, collapsing traps, separatrix regions) and stochastic acceleration in a turbulent environment. Fluid, test-particle, and particle-in-cell approaches are used and results compared. While these studies show considerable promise in accounting for the various observational manifestations of solar flares, they are limited by a number of factors, mostly relating to available computational power. Not the least of these issues is the need to explicitly incorporate the electrodynamic feedback of the accelerated particles themselves on the environment in which they are accelerated. A brief prognosis for future advancement is offered.Comment: This is a chapter in a monograph on the physics of solar flares, inspired by RHESSI observations. The individual articles are to appear in Space Science Reviews (2011

    An fMRI investigation of the relationship between future imagination and cognitive flexibility

    Get PDF
    While future imagination is largely considered to be a cognitive process grounded in default mode network activity, studies have shown that future imagination recruits regions in both default mode and frontoparietal control networks. In addition, it has recently been shown that the ability to imagine the future is associated with cognitive flexibility, and that tasks requiring cognitive flexibility result in increased coupling of the default mode network with frontoparietal control and salience networks. In the current study, we investigated the neural correlates underlying the association between cognitive flexibility and future imagination in two ways. First, we experimentally varied the degree of cognitive flexibility required during future imagination by manipulating the disparateness of episodic details contributing to imagined events. To this end, participants generated episodic details (persons, locations, objects) within three social spheres; during fMRI scanning they were presented with sets of three episodic details all taken from the same social sphere (Congruent condition) or different social spheres (Incongruent condition) and required to imagine a future event involving the three details. We predicted that, relative to the Congruent condition, future simulation in the Incongruent condition would be associated with increased activity in regions of the default mode, frontoparietal and salience networks. Second, we hypothesized that individual differences in cognitive flexibility, as measured by performance on the Alternate Uses Task, would correspond to individual differences in the brain regions recruited during future imagination. A task partial least squares (PLS) analysis showed that the Incongruent condition resulted in an increase in activity in regions in salience networks (e.g. the insula) but, contrary to our prediction, reduced activity in many regions of the default mode network (including the hippocampus). A subsequent functional connectivity (within-subject seed PLS) analysis showed that the insula exhibited increased coupling with default mode regions during the Incongruent condition. Finally, a behavioral PLS analysis showed that individual differences in cognitive flexibility were associated with differences in activity in a number of regions from frontoparietal, salience and default-mode networks during both future imagination conditions, further highlighting that the cognitive flexibility underlying future imagination is grounded in the complex interaction of regions in these networks

    The ‘mosaic habitat’ concept in human evolution: past and present

    Get PDF
    The habitats preferred by hominins and other species are an important theme in palaeoanthropology, and the ‘mosaic habitat’ (also referred to as habitat heterogeneity) has been a central concept in this regard for the last four decades. Here we explore the development of this concept – loosely defined as a range of different habitat types, such as woodlands, riverine forest and savannah within a limited spatial area– in studies of human evolution in the last sixty years or so. We outline the key developments that took place before and around the time when the term ‘mosaic’ came to wider palaeoanthropological attention. To achieve this we used an analysis of the published literature, a study of illustrations of hominin evolution from 1925 onwards and an email survey of senior researchers in palaeoanthropology and related fields. We found that the term mosaic starts to be applied in palaeoanthropological thinking during the 1970’s due to the work of a number of researchers, including Karl Butzer and Glynn Isaac , with the earliest usage we have found of ‘mosaic’ in specific reference to hominin habitats being by Adriaan Kortlandt (1972). While we observe a steady increase in the numbers of publications reporting mosaic palaeohabitats, in keeping with the growing interest and specialisation in various methods of palaeoenvironmental reconstruction, we also note that there is a lack of critical studies that define this habitat, or examine the temporal and spatial scales associated with it. The general consensus within the field is that the concept now requires more detailed definition and study to evaluate its role in human evolution

    An Observational Overview of Solar Flares

    Full text link
    We present an overview of solar flares and associated phenomena, drawing upon a wide range of observational data primarily from the RHESSI era. Following an introductory discussion and overview of the status of observational capabilities, the article is split into topical sections which deal with different areas of flare phenomena (footpoints and ribbons, coronal sources, relationship to coronal mass ejections) and their interconnections. We also discuss flare soft X-ray spectroscopy and the energetics of the process. The emphasis is to describe the observations from multiple points of view, while bearing in mind the models that link them to each other and to theory. The present theoretical and observational understanding of solar flares is far from complete, so we conclude with a brief discussion of models, and a list of missing but important observations.Comment: This is an article for a monograph on the physics of solar flares, inspired by RHESSI observations. The individual articles are to appear in Space Science Reviews (2011
    • 

    corecore