38 research outputs found

    Getting a Grip on Memory: Unilateral Hand Clenching Alters Episodic Recall

    Get PDF
    Unilateral hand clenching increases neuronal activity in the frontal lobe of the contralateral hemisphere. Such hand clenching is also associated with increased experiencing a given hemisphere’s “mode of processing.” Together, these findings suggest that unilateral hand clenching can be used to test hypotheses concerning the specializations of the cerebral hemispheres during memory encoding and retrieval. We investigated this possibility by testing the effects of a unilateral hand clenching on episodic memory. The hemispheric Encoding/Retrieval Asymmetry (HERA) model proposes left prefrontal regions are associated with encoding, and right prefrontal regions with retrieval, of episodic memories. It was hypothesized that right-hand clenching (left hemisphere activation) pre-encoding, and left-hand clenching (right hemisphere activation) pre-recall, would result in superior memory. Results supported the HERA model. Also supported was that simple unilateral hand clenching can be used as a means by which the functional specializations of the cerebral hemispheres can be investigated in intact humans

    Strength, But Not Direction, of Handedness Is Related to Height

    Get PDF
    Left-handers are reputed to be shorter than right-handers. However, previous research has confounded handedness direction (left- versus right-handedness) with handedness strength (consistency with which one hand is chosen across a variety of tasks; consistent- versus inconsistent-handedness). Here, we support a relationship between handedness strength, but not direction, and stature, with increasing inconsistent-handedness associated with increasing self-reported height

    Historical ecology with real numbers: past and present extent and biomass of an imperiled estuarine habitat

    Get PDF
    Historic baselines are important in developing our understanding of ecosystems in the face of rapid global change. While a number of studies have sought to determine changes in extent of exploited habitats over historic timescales, few have quantified such changes prior to late twentieth century baselines. Here, we present, to our knowledge, the first ever large-scale quantitative assessment of the extent and biomass of marine habitat-forming species over a 100-year time frame. We examined records of wild native oyster abundance in the United States from a historic, yet already exploited, baseline between 1878 and 1935 (predominantly 1885–1915), and a current baseline between 1968 and 2010 (predominantly 2000–2010). We quantified the extent of oyster grounds in 39 estuaries historically and 51 estuaries from recent times. Data from 24 estuaries allowed comparison of historic to present extent and biomass. We found evidence for a 64 per cent decline in the spatial extent of oyster habitat and an 88 per cent decline in oyster biomass over time. The difference between these two numbers illustrates that current areal extent measures may be masking significant loss of habitat through degradation

    Phylogenomics of the Reproductive Parasite Wolbachia pipientis wMel: A Streamlined Genome Overrun by Mobile Genetic Elements

    Get PDF
    The complete sequence of the 1,267,782 bp genome of Wolbachia pipientis wMel, an obligate intracellular bacteria of Drosophila melanogaster, has been determined. Wolbachia, which are found in a variety of invertebrate species, are of great interest due to their diverse interactions with different hosts, which range from many forms of reproductive parasitism to mutualistic symbioses. Analysis of the wMel genome, in particular phylogenomic comparisons with other intracellular bacteria, has revealed many insights into the biology and evolution of wMel and Wolbachia in general. For example, the wMel genome is unique among sequenced obligate intracellular species in both being highly streamlined and containing very high levels of repetitive DNA and mobile DNA elements. This observation, coupled with multiple evolutionary reconstructions, suggests that natural selection is somewhat inefficient in wMel, most likely owing to the occurrence of repeated population bottlenecks. Genome analysis predicts many metabolic differences with the closely related Rickettsia species, including the presence of intact glycolysis and purine synthesis, which may compensate for an inability to obtain ATP directly from its host, as Rickettsia can. Other discoveries include the apparent inability of wMel to synthesize lipopolysaccharide and the presence of the most genes encoding proteins with ankyrin repeat domains of any prokaryotic genome yet sequenced. Despite the ability of wMel to infect the germline of its host, we find no evidence for either recent lateral gene transfer between wMel and D. melanogaster or older transfers between Wolbachia and any host. Evolutionary analysis further supports the hypothesis that mitochondria share a common ancestor with the α-Proteobacteria, but shows little support for the grouping of mitochondria with species in the order Rickettsiales. With the availability of the complete genomes of both species and excellent genetic tools for the host, the wMel–D. melanogaster symbiosis is now an ideal system for studying the biology and evolution of Wolbachia infections

    The Time-domain Spectroscopic Survey: Target Selection for Repeat Spectroscopy

    Full text link

    The Transmembrane Domain of the Respiratory Syncytial Virus F Protein Is an Orientation-Independent Apical Plasma Membrane Sorting Sequence

    No full text
    The processes that facilitate transport of integral membrane proteins though the secretory pathway and subsequently target them to particular cellular membranes are relevant to almost every field of biology. These transport processes involve integration of proteins into the membrane of the endoplasmic reticulum (ER), passage from the ER to the Golgi, and post-Golgi trafficking. The respiratory syncytial virus (RSV) fusion (F) protein is a type I integral membrane protein that is uniformly distributed on the surface of infected nonpolarized cells and localizes to the apical plasma membrane of polarized epithelial cells. We expressed wild-type or altered RSV F proteins to gain a better understanding of secretory transport and plasma membrane targeting of type I membrane proteins in polarized and nonpolarized epithelial cells. Our findings reveal a novel, orientation-independent apical plasma membrane targeting function for the transmembrane domain of the RSV F protein in polarized epithelial cells. This work provides a basis for a more complete understanding of the role of the transmembrane domain and cytoplasmic tail of viral type I integral membrane proteins in secretory transport and plasma membrane targeting in polarized and nonpolarized cells
    corecore