93 research outputs found

    Harmonization and standardization of nucleus pulposus cell extraction and culture methods

    Get PDF
    Background In vitro studies using nucleus pulposus (NP) cells are commonly used to investigate disc cell biology and pathogenesis, or to aid in the development of new therapies. However, lab-to-lab variability jeopardizes the much-needed progress in the field. Here, an international group of spine scientists collaborated to standardize extraction and expansion techniques for NP cells to reduce variability, improve comparability between labs and improve utilization of funding and resources. Methods The most commonly applied methods for NP cell extraction, expansion, and re-differentiation were identified using a questionnaire to research groups worldwide. NP cell extraction methods from rat, rabbit, pig, dog, cow, and human NP tissue were experimentally assessed. Expansion and re-differentiation media and techniques were also investigated. Results Recommended protocols are provided for extraction, expansion, and re-differentiation of NP cells from common species utilized for NP cell culture. Conclusions This international, multilab and multispecies study identified cell extraction methods for greater cell yield and fewer gene expression changes by applying species-specific pronase usage, 60–100 U/ml collagenase for shorter durations. Recommendations for NP cell expansion, passage number, and many factors driving successful cell culture in different species are also addressed to support harmonization, rigor, and cross-lab comparisons on NP cells worldwide

    Fine-mapping of prostate cancer susceptibility loci in a large meta-analysis identifies candidate causal variants

    Get PDF
    Prostate cancer is a polygenic disease with a large heritable component. A number of common, low-penetrance prostate cancer risk loci have been identified through GWAS. Here we apply the Bayesian multivariate variable selection algorithm JAM to fine-map 84 prostate cancer susceptibility loci, using summary data from a large European ancestry meta-analysis. We observe evidence for multiple independent signals at 12 regions and 99 risk signals overall. Only 15 original GWAS tag SNPs remain among the catalogue of candidate variants identified; the remainder are replaced by more likely candidates. Biological annotation of our credible set of variants indicates significant enrichment within promoter and enhancer elements, and transcription factor-binding sites, including AR, ERG and FOXA1. In 40 regions at least one variant is colocalised with an eQTL in prostate cancer tissue. The refined set of candidate variants substantially increase the proportion of familial relative risk explained by these known susceptibility regions, which highlights the importance of fine-mapping studies and has implications for clinical risk profiling. © 2018 The Author(s).Prostate cancer is a polygenic disease with a large heritable component. A number of common, low-penetrance prostate cancer risk loci have been identified through GWAS. Here we apply the Bayesian multivariate variable selection algorithm JAM to fine-map 84 prostate cancer susceptibility loci, using summary data from a large European ancestry meta-analysis. We observe evidence for multiple independent signals at 12 regions and 99 risk signals overall. Only 15 original GWAS tag SNPs remain among the catalogue of candidate variants identified; the remainder are replaced by more likely candidates. Biological annotation of our credible set of variants indicates significant enrichment within promoter and enhancer elements, and transcription factor-binding sites, including AR, ERG and FOXA1. In 40 regions at least one variant is colocalised with an eQTL in prostate cancer tissue. The refined set of candidate variants substantially increase the proportion of familial relative risk explained by these known susceptibility regions, which highlights the importance of fine-mapping studies and has implications for clinical risk profiling. © 2018 The Author(s).Peer reviewe

    Mudança organizacional: uma abordagem preliminar

    Full text link

    Imaging mass spectrometry of myxoid sarcomas identifies proteins and lipids specific to tumour type and grade, and reveals biochemical intratumour heterogeneity

    No full text
    Myxofibrosarcoma and myxoid liposarcomas are relatively common soft tissue tumours that are characterized by their so-called myxoid extracellular matrix and have to some extent overlap in histology. The exact composition and potential role of their myxoid extracellular matrix are insufficiently understood. To gain more insight into the biomolecular content of these tumours, we have studied 40 well-documented myxofibrosarcoma and myxoid liposarcoma cases using imaging mass spectrometry. This technique provides a multiplex biomolecular imaging analysis of the tissue, spanning multiple molecular domains and without a priori knowledge of the tissue's biomolecular content. We have developed experimental protocols for analysing the peptide, protein, and lipid content of myxofibrosarcoma and myxoid liposarcomas, and have detected proteins and lipids that are tumour-type and tumour-grade specific. In particular, lipid changes observed in myxoid liposarcomas could be related to pathways known to be affected during tumour progression. Unsupervised clustering of the biomolecular signatures was able to classify myxofibrosarcoma and myxoid liposarcomas according to tumour type and tumour grade. Closer examination of histologically similar regions in the tissues revealed intratumour heterogeneity, which was a consistent feature in each of the myxofibrosarcomas studied. In intermediate-grade myxofibrosarcoma, it was found that single tissue sections could contain regions with biomolecular profiles similar to high-grade and low-grade tumours, and that these regions were associated with the tumour's nodular structure, thus supporting a concept of tumour progression through clonal selection. Copyright (C) 2010 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.Molecular tumour pathology - and tumour genetic

    Peptide and protein imaging mass spectrometry in cancer research

    No full text
    MALDI mass spectrometry is able to acquire protein profiles directly from tissue that can describe the levels of hundreds of distinct proteins. MALDI imaging MS can simultaneously reveal how each of these proteins varies in heterogeneous tissues. Numerous studies have now demonstrated how MALDI imaging MS can generate different protein profiles from the different cell types in a tumor, which can act as biomarker profiles or enable specific candidate protein biomarkers to be identified. MALDI imaging MS can be directly applied to patient samples where its utility is to accomplish untargeted multiplex analysis of the tissue's protein content, enabling the different regions of the tissue to be differentiated on the basis of previously unknown protein profiles/biomarkers. The technique continues to rapidly develop and is now approaching the cusp whereby its potential to provide new diagnostic/prognostic tools for cancer patients can be routinely investigated. Here the latest methodological developments are summarized and its application to a range of tumors is reported in detail. The prospects of MALDI imaging MS are then described from the perspectives of modern pathological practice and MS-based proteomics, to ensure the outlook addresses real clinical needs and reflects the real capabilities of MS-based proteomics of complex tissue samples. (C) 2010 Elsevier B.V. All rights reserved.Proteomic
    corecore