12 research outputs found

    Resource design in constrained networks for network lifetime increase

    Get PDF
    As constrained "things" become increasingly integrated with the Internet and accessible for interactive communication, energy efficient ways to collect, aggregate, and share data over such constrained networks are needed. In this paper, we propose the use of constrained RESTful environments interfaces to build resource collections having a network lifetime increase in mind. More specifically, based on existing atomic resources, collections are created/designed to become available as new resources, which can be observed. Such resource design should not only match client's interests, but also increase network lifetime as much as possible. For this to happen, energy consumption should be balanced/fair among nodes so that node depletion is delayed. When compared with previous approaches, results show that energy efficiency and network lifetime can be increased while reducing control/registration messages, which are used to set up or change observations

    An energy-aware resource design model for constrained networks

    Get PDF
    The Internet of Things is expected to incorporate objects and sensor networks of all kinds, and in particular, constrained sensor networks where energy consumption is a critical issue. In order to increase the lifetime of such networks, intelligent and standard-based solutions should be used. Here, we address this challenge through the use of CoRE interfaces for the resource design. These interfaces allow the server side to compose/organize resources and the client side to discover and determine how to consume such resources, besides allowing decisions to be easily integrated into the operation of the network. An energy-aware resource design model is proposed, based on CoRE interfaces, for the design of resources matching client needs. Based on this model, we develop an algorithm that proved to be energy efficient

    GACN: Self-clustering genetic algorithm for constrained networks

    Get PDF
    Extending the lifespan of a wireless sensor network is a complex problem that involves several factors, ranging from device hardware capacity (batteries, processing capabilities, and radio efficiency) to the chosen software stack, which is often unaccounted for by the previous approaches. This letter proposes a genetic algorithm-based clustering optimization method for constrained networks that significantly improves the previous state-of-the-art results, while accounting for the specificities of the Internet engineering task force, Constrained RESTful Environment (CoRE), standards for data transmission and specifically relying on CoRE interfaces, which fit this purpose very well.info:eu-repo/semantics/publishedVersio

    A distributed CoRE-Based resource synchronization mechanism

    No full text
    Representational state transfer (REST) application programming interfaces and event processing are the cornerstone of the dynamic Internet of Things. While the former is required for device interoperability, the latter is important for autonomous and responsive systems. In recent years, both topics have received a lot of attention and have been drastically changing due to the emergence of new applications, which end up working inefficiently with current standards and architectures. More recently, event processing started to move down from the top (cloud) to bottom (edge devices). At the same time, the Internet Engineering Task Force, which normally solves low-layer protocol-related problems, has also started looking at event processing and resource synchronization from a bottom-up perspective. This article explores the intersection of these efforts by making an in-depth overview of currently existing standards, and Internet drafts, that allow building complex event processing chains. Next, a new reusable and scalable event processing mechanism, which can be distributed across multiple end-devices, is introduced. Its optimal distribution across end-devices is mathematically addressed, and results confirm its effectiveness.Foundation for Science and Technology (FCT) in Portugal through the Center for Electronic, Optoelectronic and Telecommunications [UID/MULTI/00631/2019][SFRH/BD/138836/2018]info:eu-repo/semantics/publishedVersio

    2013 ACCF/AHA Guideline for the Management of Heart Failure: Executive Summary

    No full text
    corecore