84 research outputs found
Year in review in Intensive Care Medicine 2011: III. ARDS and ECMO, weaning, mechanical ventilation, noninvasive ventilation, pediatrics and miscellanea
SCOPUS: re.jinfo:eu-repo/semantics/publishe
Search for CP violation in Λb0→pK− and Λb0→pπ− decays
A search for CP violation in Λb0→pK− and Λb0→pπ− decays is presented using a sample of pp collisions collected with the LHCb detector and corresponding to an integrated luminosity of 3.0fb−1. The CP -violating asymmetries are measured to be ACPpK−=−0.020±0.013±0.019 and ACPpπ−=−0.035±0.017±0.020, and their difference ACPpK−−ACPpπ−=0.014±0.022±0.010, where the first uncertainties are statistical and the second systematic. These are the most precise measurements of such asymmetries to date
Measurement of the CP asymmetry in B- -> (Ds-D0) and B- -> (D-D0) decays
The CP asymmetry in B- -> (Ds-D0) and B- -> (D-D0) decays is measured using LHCb data corresponding to an integrated luminosity of 3.0 fb(-1), collected in pp collisions at centre-of-mass energies of 7 and 8TeV. The results are A(CP) (B- -> (Ds-D0)) = (-0.4 +/- 0.5 +/- 0.5)% and A(CP) (B- -> (D-D0)) = (2.3 +/- 2.7 +/- 0.4)%, where the first uncertainties are statistical and the second systematic. This is the first measurement of A(CP) (B- -> (Ds-D0)) and the most precise determination of A(CP) (B- -> (D-D0)). Neither result shows evidence of CP violation
Measurement of the CKM angle using with decays
A model-dependent amplitude analysis of the decay is performed using proton-proton collision data
corresponding to an integrated luminosity of 3.0fb, recorded at
and by the LHCb experiment. The CP violation observables
and , sensitive to the CKM angle , are measured to
be \begin{eqnarray*} x_- &=& -0.15 \pm 0.14 \pm 0.03 \pm 0.01, y_- &=& 0.25 \pm
0.15 \pm 0.06 \pm 0.01, x_+ &=& 0.05 \pm 0.24 \pm 0.04 \pm 0.01, y_+ &=&
-0.65^{+0.24}_{-0.23} \pm 0.08 \pm 0.01, \end{eqnarray*} where the first
uncertainties are statistical, the second systematic and the third arise from
the uncertainty on the amplitude model. These
are the most precise measurements of these observables. They correspond to
and , where is
the magnitude of the ratio of the suppressed and favoured decay amplitudes, in a mass region of around the
mass and for an absolute value of the cosine of the decay
angle larger than .Comment: All figures and tables, along with any supplementary material and
additional information, are available at
https://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2016-007.htm
Search for dark photons produced in 13 TeV collisions
Searches are performed for both promptlike and long-lived dark photons,
A
0
, produced in proton-proton
collisions at a center-of-mass energy of 13 TeV, using
A
0
→
μ
þ
μ
−
decays and a data sample corresponding
to an integrated luminosity of
1
.
6
fb
−
1
collected with the LHCb detector. The promptlike
A
0
search covers
the mass range from near the dimuon threshold up to 70 GeV, while the long-lived
A
0
search is restricted to
the low-mass region
214
<m
ð
A
0
Þ
<
350
MeV. No evidence for a signal is found, and 90% confidence
level exclusion limits are placed on the
γ
–
A
0
kinetic-mixing strength. The constraints placed on promptlike
dark photons are the most stringent to date for the mass range
10
.
6
<m
ð
A
0
Þ
<
70
GeV, and are
comparable to the best existing limits for
m
ð
A
0
Þ
<
0
.
5
GeV. The search for long-lived dark photons is the
first to achieve sensitivity using a displaced-vertex signature
Search for the decay
A search for decays is performed
using of collision data recorded by the LHCb
experiment during 2011 and 2012. The meson is reconstructed
through its decay to the final state in the mass window . No significant
signal is observed. The first upper limits on the branching fraction of
are set at () confidence level.Comment: 20 pages, 2 figures, published in JHE
Measurement of asymmetry in decays
We report the measurements of the -violating parameters in decays observed in collisions, using a data set corresponding to an integrated luminosity of recorded with the LHCb detector. We measure , , , , , where the uncertainties are statistical and systematic, respectively. These parameters are used together with the world-average value of the mixing phase, , to obtain a measurement of the CKM angle from decays, yielding \gamma = (128\,_{-22}^{+17})^\circ modulo , where the uncertainty contains both statistical and systematic contributions. This corresponds to evidence for violation in the interference between decay and decay after mixing.We report the measurements of the CP -violating parameters in B → D K decays observed in pp collisions, using a data set corresponding to an integrated luminosity of 3.0 fb recorded with the LHCb detector. We measure C = 0.73 ± 0.14 ± 0.05, A = 0.39 ± 0.28 ± 0.15, , S = −0.52 ± 0.20 ± 0.07, , where the uncertainties are statistical and systematic, respectively. These parameters are used together with the world-average value of the B mixing phase, −2β , to obtain a measurement of the CKM angle γ from B → D K decays, yielding γ = (128 )° modulo 180°, where the uncertainty contains both statistical and systematic contributions. This corresponds to 3.8 σ evidence for CP violation in the interference between decay and decay after mixing
Measurement of the electron reconstruction efficiency at LHCb
The single electron track-reconstruction efficiency is calibrated using a sample corresponding to 1.3 fb−1 of pp collision data recorded with the LHCb detector in 2017. This measurement exploits B+→ J/ψ(e+e−)K+ decays, where one of the electrons is fully reconstructed and paired with the kaon, while the other electron is reconstructed using only the information of the vertex detector. Despite this partial reconstruction, kinematic and geometric constraints allow the B meson mass to be reconstructed and the signal to be well separated from backgrounds. This in turn allows the electron reconstruction efficiency to be measured by matching the partial track segment found in the vertex detector to tracks found by LHCb's regular reconstruction algorithms. The agreement between data and simulation is evaluated, and corrections are derived for simulated electrons in bins of kinematics. These correction factors allow LHCb to measure branching fractions involving single electrons with a systematic uncertainty below 1%
- …