48 research outputs found

    Complex Spatial Responses to Cucumber Mosaic Virus Infection in Susceptible Cucurbita

    Full text link

    Turnip crinkle virus coat protein mediates suppression of RNA silencing in nicotiana benthamiana

    Get PDF
    AbstractAll of the protein products of Turnip crinkle virus (TCV; Tombusviridae, Carmovirus) were tested for their ability to suppress RNA silencing of a reporter gene after transient expression in Agrobacterium-infiltrated Nicotiana benthamiana leaves. Only the capsid protein, P38, showed suppression activity, although this was not obvious when P38 was expressed as part of a TCV infection of the same tissues. When P38 was expressed from a PVX vector, symptoms with enhanced severity that correlated with increased PVX RNA accumulation were observed. This contradiction between ectopic expression of P38 and TCV infection could be accounted for if the active determinant of suppressor activity within P38 was sequestered within the capsid protein structure. The N-terminal 25 amino acids were shown to be important for this activity. This region forms part of the unexposed R-domain that interacts with the RNA within the virus particle. This observation throws light on some of the complex biology exhibited by TCV

    Australian clinical practice guidelines for the diagnosis and management of Barrett's esophagus and early esophageal adenocarcinoma

    Get PDF
    Author version made available following 12 month embargo from date of publication according to publisher copyright policy.Barrett's esophagus (BE), a common condition, is the only known precursor to esophageal adenocarcinoma (EAC). There is uncertainty about the best way to manage BE as most people with BE never develop EAC and most patients diagnosed with EAC have no preceding diagnosis of BE. Moreover, there have been recent advances in knowledge and practice about the management of BE and early EAC. To aid clinical decision making in this rapidly moving field, Cancer Council Australia convened an expert working party to identify pertinent clinical questions. The questions covered a wide range of topics including endoscopic and histological definitions of BE and early EAC; prevalence, incidence, natural history, and risk factors for BE; and methods for managing BE and early EAC. The latter considered modification of lifestyle factors; screening and surveillance strategies; and medical, endoscopic, and surgical interventions. To answer each question, the working party systematically reviewed the literature and developed a set of recommendations through consensus. Evidence underpinning each recommendation was rated according to quality and applicability

    A Family of Plasmodesmal Proteins with Receptor-Like Properties for Plant Viral Movement Proteins

    Get PDF
    Plasmodesmata (PD) are essential but poorly understood structures in plant cell walls that provide symplastic continuity and intercellular communication pathways between adjacent cells and thus play fundamental roles in development and pathogenesis. Viruses encode movement proteins (MPs) that modify these tightly regulated pores to facilitate their spread from cell to cell. The most striking of these modifications is observed for groups of viruses whose MPs form tubules that assemble in PDs and through which virions are transported to neighbouring cells. The nature of the molecular interactions between viral MPs and PD components and their role in viral movement has remained essentially unknown. Here, we show that the family of PD-located proteins (PDLPs) promotes the movement of viruses that use tubule-guided movement by interacting redundantly with tubule-forming MPs within PDs. Genetic disruption of this interaction leads to reduced tubule formation, delayed infection and attenuated symptoms. Our results implicate PDLPs as PD proteins with receptor-like properties involved the assembly of viral MPs into tubules to promote viral movement

    Arabidopsis Plasmodesmal Proteome

    Get PDF
    The multicellular nature of plants requires that cells should communicate in order to coordinate essential functions. This is achieved in part by molecular flux through pores in the cell wall, called plasmodesmata. We describe the proteomic analysis of plasmodesmata purified from the walls of Arabidopsis suspension cells. Isolated plasmodesmata were seen as membrane-rich structures largely devoid of immunoreactive markers for the plasma membrane, endoplasmic reticulum and cytoplasmic components. Using nano-liquid chromatography and an Orbitrap ion-trap tandem mass spectrometer, 1341 proteins were identified. We refer to this list as the plasmodesmata- or PD-proteome. Relative to other cell wall proteomes, the PD-proteome is depleted in wall proteins and enriched for membrane proteins, but still has a significant number (35%) of putative cytoplasmic contaminants, probably reflecting the sensitivity of the proteomic detection system. To validate the PD-proteome we searched for known plasmodesmal proteins and used molecular and cell biological techniques to identify novel putative plasmodesmal proteins from a small subset of candidates. The PD-proteome contained known plasmodesmal proteins and some inferred plasmodesmal proteins, based upon sequence or functional homology with examples identified in different plant systems. Many of these had a membrane association reflecting the membranous nature of isolated structures. Exploiting this connection we analysed a sample of the abundant receptor-like class of membrane proteins and a small random selection of other membrane proteins for their ability to target plasmodesmata as fluorescently-tagged fusion proteins. From 15 candidates we identified three receptor-like kinases, a tetraspanin and a protein of unknown function as novel potential plasmodesmal proteins. Together with published work, these data suggest that the membranous elements in plasmodesmata may be rich in receptor-like functions, and they validate the content of the PD-proteome as a valuable resource for the further uncovering of the structure and function of plasmodesmata as key components in cell-to-cell communication in plants

    Atmosphere-ocean-ice interactions in the Amundsen Sea Embayment, West Antarctica

    Get PDF
    Over recent decades outlet glaciers of the Amundsen Sea Embayment (ASE), West Antarctica, have accelerated, thinned and retreated, and are now contributing approximately 10% to global sea level rise. All the ASE glaciers flow into ice shelves, and it is the thinning of these since the 1970s, and their ungrounding from “pinning points” that is widely held to be responsible for triggering the glaciers’ decline. These changes have been linked to the inflow of warm Circumpolar Deep Water (CDW) onto the ASE's continental shelf. CDW delivery is highly variable, and is closely related to the regional atmospheric circulation. The ASE is south of the Amundsen Sea Low (ASL), which has a large variability and which has deepened in recent decades. The ASL is influenced by the phase of the Southern Annular Mode, along with tropical climate variability. It is not currently possible to simulate such complex atmosphere-ocean-ice interactions in models, hampering prediction of future change. The current retreat could mark the beginning of an unstable phase of the ASE glaciers that, if continued, will result in collapse of the West Antarctic Ice Sheet, but numerical ice-sheet models currently lack the predictive power to answer this question. It is equally possible that the recent retreat will be short-lived and that the ASE will find a new stable state. Progress is hindered by incomplete knowledge of bed topography in the vicinity of the grounding line. Furthermore, a number of key processes are still missing or poorly represented in models of ice-flow
    corecore