116 research outputs found

    Development of an isoform-specific gene suppression system: the study of the human Pax-5B transcriptional element

    Get PDF
    The transcription factor Pax-5, is vital during B lymphocyte differentiation and is known to contribute to the oncogenesis of certain cancers. The Pax-5 locus generates multiple yet structurally related mRNA transcripts through the specific activation of alternative promoter regions and/or alternative splicing events which poses challenges in the study of specific isoform function. In this study, we investigated the function of a major Pax-5 transcript, Pax-5B using an enhanced version of the Hepatitis Delta Virus ribozyme (HDV Rz) suppression system that is specifically designed to recognize and cleave the human Pax-5B mRNA. The activity of these ribozymes resulted in the specific suppression of the Pax-5B transcripts without altering the transcript levels of other closely related Pax-5 isoforms mRNAs both in vitro and in an intracellular setting. Following stable transfection of the ribozymes into a model B cell line (REH), we showed that Pax-5B suppression led to an increase of CD19 mRNA and cell surface protein expression. In response to this Pax-5B specific deregulation, a marked increase in apoptotic activity compared to control cell lines was observed. These results suggest that Pax-5B has distinct roles in physiological processes in cell fate events during lymphocyte development

    Correlation of expression of BP1, a homeobox gene, with estrogen receptor status in breast cancer

    Get PDF
    BACKGROUND: BP1 is a novel homeobox gene cloned in our laboratory. Our previous studies in leukemia demonstrated that BP1 has oncogenic properties, including as a modulator of cell survival. Here BP1 expression was examined in breast cancer, and the relationship between BP1 expression and clinicopathological data was determined. METHODS: Total RNA was isolated from cell lines, tumors, and matched normal adjacent tissue or tissue from autopsy. Reverse transcription polymerase chain reaction was performed to evaluate BP1 expression. Statistical analysis was accomplished with SAS. RESULTS: Analysis of 46 invasive ductal breast tumors demonstrated BP1 expression in 80% of them, compared with a lack of expression in six normal breast tissues and low-level expression in one normal breast tissue. Remarkably, 100% of tumors that were negative for the estrogen receptor (ER) were BP1-positive, whereas 73% of ER-positive tumors expressed BP1 (P = 0.03). BP1 expression was also associated with race: 89% of the tumors of African American women were BP1-positive, whereas 57% of those from Caucasian women expressed BP1 (P = 0.04). However, there was no significant difference in BP1 expression between grades I, II, and III tumors. Interestingly, BP1 mRNA expression was correlated with the ability of malignant cell lines to cause breast cancer in mice. CONCLUSION: Because BP1 is expressed abnormally in breast tumors, it could provide a useful target for therapy, particularly in patients with ER-negative tumors. The frequent expression of BP1 in all tumor grades suggests that activation of BP1 is an early event

    Rare and Frequent Promoter Methylation, Respectively, of TSHZ2 and 3 Genes That Are Both Downregulated in Expression in Breast and Prostate Cancers

    Get PDF
    Neoplastic cells harbor both hypomethylated and hypermethylated regions of DNA. Whereas hypomethylation is found mainly in repeat sequences, regional hypermethylation has been linked to the transcriptional silencing of certain tumor suppressor genes. We attempted to search for candidate genes involved in breast/prostate carcinogenesis, using the criteria that they should be expressed in primary cultures of normal breast/prostate epithelial cells but are frequently downregulated in breast/prostate cancer cell lines and that their promoters are hypermethylated.We identified several dozens of candidates among 194 homeobox and related genes using Systematic Multiplex RT-PCR and among 23,000 known genes and 23,000 other expressed sequences in the human genome by DNA microarray hybridization. An additional examination, by real-time qRT-PCR of clinical specimens of breast cancer, further narrowed the list of the candidates. Among them, the most frequently downregulated genes in tumors were NP_775756 and ZNF537, from the homeobox gene search and the genome-wide search, respectively. To our surprise, we later discovered that these genes belong to the same gene family, the 3-member Teashirt family, bearing the new names of TSHZ2 and TSHZ3. We subsequently determined the methylation status of their gene promoters. The TSHZ3 gene promoter was found to be methylated in all the breast/prostate cancer cell lines and some of the breast cancer clinical specimens analyzed. The TSHZ2 gene promoter, on the other hand, was unmethylated except for the MDA-MB-231 breast cancer cell line. The TSHZ1 gene was always expressed, and its promoter was unmethylated in all cases.TSHZ2 and TSHZ3 genes turned out to be the most interesting candidates for novel tumor suppressor genes. Expression of both genes is downregulated. However, differential promoter methylation suggests the existence of distinctive mechanisms of transcriptional inactivation for these genes

    Pax genes in embryogenesis and oncogenesis

    Get PDF
    The paired box genes are a family of nine developmental control genes, which in human beings (PAX) and mice (Pax) encode nuclear transcription factors. The temporal and spatial expressions of these highly conserved genes are tightly regulated during foetal development including organogenesis. PAY/Paxgenes are switched off during the terminal differentiation of most structures. Specific mutations within a number of PAX/Pax genes lead to developmental abnormalities in both human beings and mice. Mutation in PAX3 causes Waardenburg syndrome, and craniofacial-deafness-hand syndrome. The Splotch phenotype in mouse exhibits defects in neural crest derivatives such as, pigment cells, sympathetic ganglia and cardiac neural crest-derived structures. The PAX family also plays key roles in several human malignancies. In particular, PAX3 is involved in rhabdomyosarcoma and tumours of neural crest origin, including melanoma and neuroblastoma. This review critically evaluates the roles of PAX/Pax in oncogenesis. It especially highlights recent advances in knowledge of how their genetic alterations directly interfere in the transcriptional networks that regulate cell differentiation, proliferation, migration and survival and may contribute to oncogenesis

    The oncogenic potential of Pax genes.

    No full text
    Our results demonstrate that murine paired domain-containing genes (Pax) can promote oncogenesis in tissue culture cells and in mice, and should thus be classified as a novel group of proto-oncogenes. The induction of tumor formation in mice was dependent on a functional paired domain, but did not require the presence of a homeodomain. Consequently, not only the Pax-3 and Pax-6 proteins, which in addition to paired domains contain intact homeodomains, but also Pax-2 and Pax-8, containing only residual homeodomains, and Pax-1, completely lacking a homeodomain, were able to induce transformation of cell cultures and tumor formation in mice. The oncogenic potential of the Pax proteins is dependent on the DNA binding function of the paired motif, as the Un-Pax-1 protein, which carries a point mutation in this domain that impairs DNA binding, is also defective in tumor formation. Therefore, the Pax gene products are not only involved in controlling embryogenesis, but they can, if deregulated, also induce tumorigenesis
    corecore