23 research outputs found

    Efficient Visual Object and Word Recognition Relies on High Spatial Frequency Coding in the Left Posterior Fusiform Gyrus: Evidence from a Case-Series of Patients with Ventral Occipito-Temporal Cortex Damage

    Get PDF
    Seeing a face in motion can improve face recognition in the general population, and studies of face matching indicate that people with face recognition difficulties (developmental prosopagnosia; DP) may be able to use movement cues as a supplementary strategy to help them process faces. However, the use of facial movement cues in DP has not been examined in the context of familiar face recognition. This study examined whether people with DP were better at recognizing famous faces presented in motion, compared to static. Methods: Nine participants with DP and 14 age-matched controls completed a famous face recognition task. Each face was presented twice across 2 blocks: once in motion and once as a still image. Discriminability (A) was calculated for each block. Results: Participants with DP showed a significant movement advantage overall. This was driven by a movement advantage in the first block, but not in the second block. Participants with DP were significantly worse than controls at identifying faces from static images, but there was no difference between those with DP and controls for moving images. Conclusions: Seeing a familiar face in motion can improve face recognition in people with DP, at least in some circumstances. The mechanisms behind this effect are unclear, but these results suggest that some people with DP are able to learn and recognize patterns of facial motion, and movement can act as a useful cue when face recognition is impaired

    Quantification of Ethanedinitrile in Air Using a New and Accurate Gas Chromatography Method

    No full text
    Compared to previously tested fumigants such as methyl bromide, sulfuryl fluoride and phosphine; ethanedinitrile (EDN) is a new fumigant which is being trialled around the world as a pre-plant soil treatment and as a quarantine and pre-shipment (QPS) treatment of commodities. To collect the data necessary to assess the effectiveness of this fumigant, an accurate analytical method is needed across a wide concentration range. We reviewed the methods of detection for EDN described in recently published fumigation studies and have developed and validated a method to quantify EDN in air using a gas chromatograph equipped with a flame ionization detector (GC⁻FID). Our tested method has a linearity, precision, accuracy, limit of detection (LOD) and limit of quantification (LOQ) of R2 0.9988, 1.36%, 98.8%, 0.750 ppm and 1.073 ppm, respectively. These values were determined using internationally recognised guidelines for the validation of non-standard analytical methods, which means that our method can be applied to the different validation requirements of regulatory agencies and countries. Our method can be used for experimental conditions that require detection at low and high concentrations simultaneously because it is accurate, fast (0.6 min) and repeatable across a concentration range of 1 to 40,000 ppm. This method will help to standardise the quantification of EDN by research groups and facilitate acceptance of data by regulatory organisations around the world

    Quantification of hydrogen cyanide as a potential decomposition product of ethanedinitrile during pine log fumigation

    No full text
    Abstract Background The Stakeholders in Methyl Bromide Reduction (STIMBR) are evaluating ethanedinitrile (EDN) as an alternative fumigant to methyl bromide for use as a phytosanitary treatment for pine logs (Pinus radiata D.Don). Ethanedinitrile is hypothesised to decompose into hydrogen cyanide (HCN) in the presence of water. This process, if it occurs, is of particular interest because it may influence the efficacy and emissions data needed for commercialisation. Methods The concentrations of EDN and HCN were measured in the treated space (28 L fumigation chambers) without (n = 1) and with pine log sections (n = 3; 46 ± 1.4% load factor) at 10 or 20 °C in a simulated commercial fumigation. Results On average, the cylinder of EDN tested contained 34.6 g m− 3 HCN (or 3.1%), which corresponds to a concentration of 0.8 g m− 3 (or 0.07%) in the treated space for a 50 g m− 3 EDN dose (commercial rate in Australia). This level of HCN is likely a result of the manufacturing process, whereby HCN is oxidised to produce EDN. During fumigation, HCN was detected in the treated space at relatively low concentrations, which did not significantly change over time. This indicates that HCN is not produced in substantial amounts during fumigation and that, as a result, insect efficacy is unlikely to be affected by low unchanging (P = 0.055) concentrations of this compound in the treated space. Conclusions The results of this work support the statement that EDN is not significantly converted to HCN during the treatment of recently harvested pine logs

    Acceleration of mesoderm development and expansion of hematopoietic progenitors in differentiating ES cells by the mouse Mix-like homeodomain transcription factor

    No full text
    The cellular and molecular events underlying the formation and differentiation of mesoderm to derivatives such as blood are critical to our understanding of the development and function of many tissues and organ systems. How different mesodermal populations are set aside to form specific lineages is not well understood. Although previous genetic studies in the mouse embryo have pointed to a critical role for the homeobox gene Mix-like (mMix) in gastrulation, its function in mesoderm development remains unclear. Hematopoietic defects have been identified in differentiating embryonic stem cells in which mMix was genetically inactivated. Here we show that conditional induction of mMix in embryonic stem cell–derived embryoid bodies results in the early activation of mesodermal markers prior to expression of Brachyury/T and acceleration of the mesodermal developmental program. Strikingly, increased numbers of mesodermal, hemangioblastic, and hematopoietic progenitors form in response to premature activation of mMix. Differentiation to primitive (embryonic) and definitive (adult type) blood cells proceeds normally and without an apparent bias in the representation of different hematopoietic cell fates. Therefore, the mouse Mix gene functions early in the recruitment and/or expansion of mesodermal progenitors to the hemangioblastic and hematopoietic lineages
    corecore