277 research outputs found

    Velocity asymmetries in YSO jets: Intrinsic and extrinsic mechanisms

    Get PDF
    It is a well established fact that some YSO jets (e.g. RW Aur) display different propagation speeds between their blue and red shifted parts, a feature possibly associated with the central engine or the environment in which the jet propagates. In order to understand the origin of asymmetric YSO jet velocities, we investigate the efficiency of two candidate mechanisms, one based on the intrinsic properties of the system and one based on the role of the external medium. In particular, a parallel or anti-parallel configuration between the protostellar magnetosphere and the disk magnetic field is considered and the resulting dynamics are examined both in an ideal and a resistive magneto-hydrodynamical (MHD) regime. Moreover, we explore the effects of a potential difference in the pressure of the environment, as a consequence of the non-uniform density distribution of molecular clouds. Ideal and resistive axisymmetric numerical simulations are carried out for a variety of models, all of which are based on a combination of two analytical solutions, a disk wind and a stellar outflow. We find that jet velocity asymmetries can indeed occur both when multipolar magnetic moments are present in the star-disk system as well as when non-uniform environments are considered. The latter case is an external mechanism that can easily explain the large time scale of the phenomenon, whereas the former one naturally relates it to the YSO intrinsic properties. [abridged]Comment: accepted for publication in A&

    Accretion discs, low-mass protostars and planets: probing the impact of magnetic fields on stellar formation

    Full text link
    Whereas the understanding of most phases of stellar evolution made considerable progress throughout the whole of the twentieth century, stellar formation remained rather enigmatic and poorly constrained by observations until about three decades ago, when major discoveries (e.g., that protostars are often associated with highly collimated jets) revolutionized the field. At this time, it became increasingly clearer that magnetic fields were playing a major role at all stages of stellar formation. We describe herein a quick overview of the main breakthroughs that observations and theoretical modelling yielded for our understanding of how stars (and their planetary systems) are formed and on how much these new worlds are shaped by the presence of magnetic fields, either those pervading the interstellar medium and threading molecular clouds or those produced through dynamo processes in the convective envelopes of protostars or in the accretion discs from which they feed.Comment: Proceedings of CNRS/PNPS astrophysical school on "stellar magnetic fields", EAS Publications Serie

    Evolution of Spin Direction of Accreting Magnetic Protostars and Spin-Orbit Misalignment in Exoplanetary Systems

    Full text link
    Recent observations have shown that in many exoplanetary systems the spin axis of the parent star is misaligned with the planet's orbital axis. These have been used to argue against the scenario that short-period planets migrated to their present-day locations due to tidal interactions with their natal discs. However, this interpretation is based on the assumption that the spins of young stars are parallel to the rotation axes of protostellar discs around them. We show that the interaction between a magnetic star and its circumstellar disc can (but not always) have the effect of pushing the stellar spin axis away from the disc angular momentum axis toward the perpendicular state and even the retrograde state. Planets formed in the disc may therefore have their orbital axes misaligned with the stellar spin axis, even before any additional planet-planet scatterings or Kozai interactions take place. In general, magnetosphere--disc interactions lead to a broad distribution of the spin--orbit angles, with some systems aligned and other systems misaligned.Comment: 10 pages, 5 figures. Comments/clarifications and a new figure (Fig.3) are added. To be published in MNRA

    Accretion funnels onto weakly magnetized young stars

    Full text link
    Aims : We re-examine the conditions required to steadily deviate an accretion flow from a circumstellar disc into a magnetospheric funnel flow onto a slow rotating young forming star. Methods : New analytical constraints on the formation of accretion funnels flows due to the presence of a dipolar stellar magnetic field disrupting the disc are derived. The Versatile Advection Code is used to confirm these constraints numerically. Axisymmetric MHD simulations are performed, where a stellar dipole field enters the resistive accretion disc, whose structure is self-consistently computed. Results : The analytical criterion derived allows to predict a priori the position of the truncation radius from a non perturbative accretion disc model. Accretion funnels are found to be robust features which occur below the co-rotation radius, where the stellar poloidal magnetic pressure becomes both at equipartition with the disc thermal pressure and is comparable to the disc poloidal ram pressure. We confirm the results of Romanova et al. 2002 and find accretion funnels for stellar dipole fields as low as 140 G in the low accretion rate limit of 109M.yr110^{-9} M_\odot.yr^{-1}. With our present numerical setup with no disc magnetic field, we found no evidence of winds, neither disc driven nor X-winds, and the star is only spun up by its interaction with the disc. Conclusions : Weak dipole fields, similar in magnitude to those observed, lead to the development of accretion funnel flows in weakly accreting T Tauri stars. However, the higher accretion observed for most T Tauri stars (M˙108M.yr1{\dot M} \sim 10^{-8} M_\odot.yr^{-1}) requires either larger stellar field strength and/or different magnetic topologies to allow for magnetospheric accretion.Comment: 8 pages, 6 figures, accepted in A&

    Accretion, Outflows, and Winds of Magnetized Stars

    Full text link
    Many types of stars have strong magnetic fields that can dynamically influence the flow of circumstellar matter. In stars with accretion disks, the stellar magnetic field can truncate the inner disk and determine the paths that matter can take to flow onto the star. These paths are different in stars with different magnetospheres and periods of rotation. External field lines of the magnetosphere may inflate and produce favorable conditions for outflows from the disk-magnetosphere boundary. Outflows can be particularly strong in the propeller regime, wherein a star rotates more rapidly than the inner disk. Outflows may also form at the disk-magnetosphere boundary of slowly rotating stars, if the magnetosphere is compressed by the accreting matter. In isolated, strongly magnetized stars, the magnetic field can influence formation and/or propagation of stellar wind outflows. Winds from low-mass, solar-type stars may be either thermally or magnetically driven, while winds from massive, luminous O and B type stars are radiatively driven. In all of these cases, the magnetic field influences matter flow from the stars and determines many observational properties. In this chapter we review recent studies of accretion, outflows, and winds of magnetized stars with a focus on three main topics: (1) accretion onto magnetized stars; (2) outflows from the disk-magnetosphere boundary; and (3) winds from isolated massive magnetized stars. We show results obtained from global magnetohydrodynamic simulations and, in a number of cases compare global simulations with observations.Comment: 60 pages, 44 figure

    The First Hour of Extra-galactic Data of the Sloan Digital Sky Survey Spectroscopic Commissioning: The Coma Cluster

    Full text link
    On 26 May 1999, one of the Sloan Digital Sky Survey (SDSS) fiber-fed spectrographs saw astronomical first light. This was followed by the first spectroscopic commissioning run during the dark period of June 1999. We present here the first hour of extra-galactic spectroscopy taken during these early commissioning stages: an observation of the Coma cluster of galaxies. Our data samples the Southern part of this cluster, out to a radius of 1.5degrees and thus fully covers the NGC 4839 group. We outline in this paper the main characteristics of the SDSS spectroscopic systems and provide redshifts and spectral classifications for 196 Coma galaxies, of which 45 redshifts are new. For the 151 galaxies in common with the literature, we find excellent agreement between our redshift determinations and the published values. As part of our analysis, we have investigated four different spectral classification algorithms: spectral line strengths, a principal component decomposition, a wavelet analysis and the fitting of spectral synthesis models to the data. We find that a significant fraction (25%) of our observed Coma galaxies show signs of recent star-formation activity and that the velocity dispersion of these active galaxies (emission-line and post-starburst galaxies) is 30% larger than the absorption-line galaxies. We also find no active galaxies within the central (projected) 200 h-1 Kpc of the cluster. The spatial distribution of our Coma active galaxies is consistent with that found at higher redshift for the CNOC1 cluster survey. Beyond the core region, the fraction of bright active galaxies appears to rise slowly out to the virial radius and are randomly distributed within the cluster with no apparent correlation with the potential merger of the NGC 4839 group. [ABRIDGED]Comment: Accepted in AJ, 65 pages, 20 figures, 5 table

    Galaxy Clustering in Early SDSS Redshift Data

    Get PDF
    We present the first measurements of clustering in the Sloan Digital Sky Survey (SDSS) galaxy redshift survey. Our sample consists of 29,300 galaxies with redshifts 5,700 km/s < cz < 39,000 km/s, distributed in several long but narrow (2.5-5 degree) segments, covering 690 square degrees. For the full, flux-limited sample, the redshift-space correlation length is approximately 8 Mpc/h. The two-dimensional correlation function \xi(r_p,\pi) shows clear signatures of both the small-scale, ``fingers-of-God'' distortion caused by velocity dispersions in collapsed objects and the large-scale compression caused by coherent flows, though the latter cannot be measured with high precision in the present sample. The inferred real-space correlation function is well described by a power law, \xi(r)=(r/6.1+/-0.2 Mpc/h)^{-1.75+/-0.03}, for 0.1 Mpc/h < r < 16 Mpc/h. The galaxy pairwise velocity dispersion is \sigma_{12} ~ 600+/-100 km/s for projected separations 0.15 Mpc/h < r_p < 5 Mpc/h. When we divide the sample by color, the red galaxies exhibit a stronger and steeper real-space correlation function and a higher pairwise velocity dispersion than do the blue galaxies. The relative behavior of subsamples defined by high/low profile concentration or high/low surface brightness is qualitatively similar to that of the red/blue subsamples. Our most striking result is a clear measurement of scale-independent luminosity bias at r < 10 Mpc/h: subsamples with absolute magnitude ranges centered on M_*-1.5, M_*, and M_*+1.5 have real-space correlation functions that are parallel power laws of slope ~ -1.8 with correlation lengths of approximately 7.4 Mpc/h, 6.3 Mpc/h, and 4.7 Mpc/h, respectively.Comment: 51 pages, 18 figures. Replaced to match accepted ApJ versio

    Colors of 2625 Quasars at 0<z<5 Measured in the Sloan Digital Sky Survey Photometric System

    Full text link
    We present an empirical investigation of the colors of quasars in the Sloan Digital Sky Survey (SDSS) photometric system. The sample studied includes 2625 quasars with SDSS photometry. The quasars are distributed in a 2.5 degree wide stripe centered on the Celestial Equator covering 529\sim529 square degrees. Positions and SDSS magnitudes are given for the 898 quasars known prior to SDSS spectroscopic commissioning. New SDSS quasars represent an increase of over 200% in the number of known quasars in this area of the sky. The ensemble average of the observed colors of quasars in the SDSS passbands are well represented by a power-law continuum with αν=0.5\alpha_{\nu} = -0.5 (fνναf_{\nu} \propto \nu^{\alpha}). However, the contributions of the 3000A˚3000 {\rm \AA} bump and other strong emission lines have a significant effect upon the colors. The color-redshift relation exhibits considerable structure, which may be of use in determining photometric redshifts for quasars. The range of colors can be accounted for by a range in the optical spectral index with a distribution αν=0.5±0.65\alpha_{\nu}=-0.5\pm0.65 (95% confidence), but there is a red tail in the distribution. This tail may be a sign of internal reddening. Finally, we show that there is a continuum of properties between quasars and Seyfert galaxies and we test the validity of the traditional division between the two classes of AGN.Comment: 66 pages, 15 figures (3 color), accepted by A

    Risk management to prioritise the eradication of new and emerging invasive non-native species

    Get PDF
    Robust tools are needed to prioritise the management of invasive non-native species (INNS). Risk assessment is commonly used to prioritise INNS, but fails to take into account the feasibility of management. Risk management provides a structured evaluation of management options, but has received little attention to date. We present a risk management scheme to assess the feasibility of eradicating INNS that can be used, in conjunction with existing risk assessment schemes, to support prioritisation. The Non-Native Risk Management scheme (NNRM) can be applied to any predefined area and any taxa. It uses semi-quantitative response and confidence scores to assess seven key criteria: Effectiveness, Practicality, Cost, Impact, Acceptability, Window of opportunity and Likelihood of re-invasion. Scores are elicited using expert judgement, supported by available evidence, and consensus-building methods. We applied the NNRM to forty-one INNS that threaten Great Britain (GB). Thirty-three experts provided scores, with overall feasibility of eradication assessed as ‘very high’ (8 species), ‘high’ (6), ‘medium’ (8), ‘low’ (10) and ‘very low’ (9). The feasibility of eradicating terrestrial species was higher than aquatic species. Lotic freshwater and marine species scored particularly low. Combining risk management and existing risk assessment scores identified six established species as priorities for eradication. A further six species that are not yet established were identified as priorities for eradication on arrival as part of contingency planning. The NNRM is one of the first INNS risk management schemes that can be used with existing risk assessments to prioritise INNS eradication in any area

    The Lantern Vol. 50, No. 2, Spring 1984

    Get PDF
    • The Storm • Je ne sais pas • The Ghetious Blastious • An Empty Cradle • The Playing Hands • Battle Hymn • A Limerick • Parting Thoughts • The River • Miss You • De la Tristeza • Two So Special • Time of the Unicorn • The Absence • Thru The Breeze • Is the World Really a Round Ball? • Brother • To Michael • Gravity • Refuge • Der Witwer • Plastic Flowers Never Die • Book on the Shelfhttps://digitalcommons.ursinus.edu/lantern/1124/thumbnail.jp
    corecore