632 research outputs found

    Light Assisted Collisional Loss in a 85/87^{85/87}Rb Ultracold Optical Trap

    Full text link
    We have studied hetero- and homonuclear excited state/ground state collisions by loading both 85^{85}Rb and 87^{87}Rb into a far off resonant trap (FORT). Because of the relatively weak confinement of the FORT, we expect the hyperfine structure of the different isotopes to play a crucial role in the collision rates. This dependence on hyperfine structure allows us to measure collisions associated with long range interatomic potentials of different structure: such as long and short ranged; or such as purely attractive, purely repulsive, or mixed attractive and repulsive. We observe significantly different loss rates for different excited state potentials. Additionally, we observe that some collisional channels' loss rates are saturated at our operating intensities (~15 mW/cm2^{2}). These losses are important limitations in loading dual isotope optical traps.Comment: about 8 pages, 5 figure

    Temporal changes in field calibration relationships for Aeroqual S500 O3 and NO2 sensor-based monitors

    Get PDF
    Sensor-based monitors are increasingly used to measure air pollutant concentrations, but require calibration under field conditions. We made intermittent comparisons (6 times over 6-month period) between ozone and nitrogen dioxide concentrations measured by Aeroqual gas-sensitive semiconductor (O3) and electrochemical (NO2) sensors (two of each) and reference analysers in the UK Automatic Urban and Rural Network. Each deployment period was split into equal (n = 48 x1-hour) training and test datasets, to derive and test calibration equations respectively. We observed significant bivariate linear relationships between Aeroqual O3 and Reference O3 concentrations, and significant multiple linear relationships between Aeroqual NO2 and both Reference NO2 and Aeroqual O3 concentrations. Changes in monitor responses over time (including apparent baseline drift in O3 sensor output, and discrepancies between the 2 Aeroqual NO2 sensors) resulted in relatively inaccurate concentrations estimates (cf. reference concentrations) from calibration equations derived in the first training period and applied to subsequent test deployments (e.g. NO2 RMSE = 47.2 μg m-3 (n = 286) for a dataset of all test periods combined, for one of the two monitor pairs). Substantial improvements in accuracy of estimated concentrations were achieved by combination of repeated intermittent training data into a single calibration dataset (NO2 RMSE = 8.5 μg m-3 for same test dataset described above). This latter approach to field calibration is recommended

    Electrical operation of planar Ge hole spin qubits in an in-plane magnetic field

    Full text link
    In this work we present a comprehensive theory of spin physics in planar Ge hole quantum dots in an in-plane magnetic field, where the orbital terms play a dominant role in qubit physics, and provide a brief comparison with experimental measurements of the angular dependence of electrically driven spin resonance. We focus the theoretical analysis on electrical spin operation, phonon-induced relaxation, and the existence of coherence sweet spots. We find that the choice of magnetic field orientation makes a substantial difference for the properties of hole spin qubits. Furthermore, although the Schrieffer-Wolff approximation can describe electron dipole spin resonance (EDSR), it does not capture the fundamental spin dynamics underlying qubit coherence. Specifically, we find that: (i) EDSR for in-plane magnetic fields varies non-linearly with the field strength and weaker than for perpendicular magnetic fields; (ii) The EDSR Rabi frequency is maximized when the a.c. electric field is aligned parallel to the magnetic field, and vanishes when the two are perpendicular; (iii) The Rabi ratio T1/TπT_1/T_\pi, i.e. the number of EDSR gate operation per unit relaxation time, is expected to be as large as 5×1055{\times}10^5 at the magnetic fields used experimentally; (iv) The orbital magnetic field terms make the in-plane gg-factor strongly anisotropic in a squeezed dot, in excellent agreement with experimental measurements; (v) The coherence sweet spots do not exist in an in-plane magnetic field, as the orbital magnetic field terms expose the qubit to all components of the defect electric field. These findings will provide a guideline for experiments to design ultrafast, highly coherent hole spin qubits in Ge

    Do we harm others even if we don't need to?

    Get PDF
    Evolutionary explanations of the co-existence of large-scale cooperation and warfare in human societies rest on the hypothesis of parochial altruism, the view that in-group pro-sociality and out-group anti-sociality have co-evolved. We designed an experiment that allows subjects to freely choose between actions that are purely pro-social, purely anti-social, or a combination of the two. We present behavioral evidence on the existence of strong aggression-a pattern of non-strategic behaviors that are welfare-reducing for all individuals (i.e., victims and perpetrators). We also show how strong aggression serves to dynamically stabilize in-group pro-sociality

    Molecular and cellular mechanisms underlying the evolution of form and function in the amniote jaw.

    Get PDF
    The amniote jaw complex is a remarkable amalgamation of derivatives from distinct embryonic cell lineages. During development, the cells in these lineages experience concerted movements, migrations, and signaling interactions that take them from their initial origins to their final destinations and imbue their derivatives with aspects of form including their axial orientation, anatomical identity, size, and shape. Perturbations along the way can produce defects and disease, but also generate the variation necessary for jaw evolution and adaptation. We focus on molecular and cellular mechanisms that regulate form in the amniote jaw complex, and that enable structural and functional integration. Special emphasis is placed on the role of cranial neural crest mesenchyme (NCM) during the species-specific patterning of bone, cartilage, tendon, muscle, and other jaw tissues. We also address the effects of biomechanical forces during jaw development and discuss ways in which certain molecular and cellular responses add adaptive and evolutionary plasticity to jaw morphology. Overall, we highlight how variation in molecular and cellular programs can promote the phenomenal diversity and functional morphology achieved during amniote jaw evolution or lead to the range of jaw defects and disease that affect the human condition

    The genomes of two key bumblebee species with primitive eusocial organization

    Get PDF
    Background: The shift from solitary to social behavior is one of the major evolutionary transitions. Primitively eusocial bumblebees are uniquely placed to illuminate the evolution of highly eusocial insect societies. Bumblebees are also invaluable natural and agricultural pollinators, and there is widespread concern over recent population declines in some species. High-quality genomic data will inform key aspects of bumblebee biology, including susceptibility to implicated population viability threats. Results: We report the high quality draft genome sequences of Bombus terrestris and Bombus impatiens, two ecologically dominant bumblebees and widely utilized study species. Comparing these new genomes to those of the highly eusocial honeybee Apis mellifera and other Hymenoptera, we identify deeply conserved similarities, as well as novelties key to the biology of these organisms. Some honeybee genome features thought to underpin advanced eusociality are also present in bumblebees, indicating an earlier evolution in the bee lineage. Xenobiotic detoxification and immune genes are similarly depauperate in bumblebees and honeybees, and multiple categories of genes linked to social organization, including development and behavior, show high conservation. Key differences identified include a bias in bumblebee chemoreception towards gustation from olfaction, and striking differences in microRNAs, potentially responsible for gene regulation underlying social and other traits. Conclusions: These two bumblebee genomes provide a foundation for post-genomic research on these key pollinators and insect societies. Overall, gene repertoires suggest that the route to advanced eusociality in bees was mediated by many small changes in many genes and processes, and not by notable expansion or depauperation

    Multi-locus genome-wide association analysis supports the role of glutamatergic synaptic transmission in the etiology of major depressive disorder

    Get PDF
    Major depressive disorder (MDD) is a common psychiatric illness characterized by low mood and loss of interest in pleasurable activities. Despite years of effort, recent genome-wide association studies (GWAS) have identified few susceptibility variants or genes that are robustly associated with MDD. Standard single-SNP (single nucleotide polymorphism)-based GWAS analysis typically has limited power to deal with the extensive heterogeneity and substantial polygenic contribution of individually weak genetic effects underlying the pathogenesis of MDD. Here, we report an alternative, gene-set-based association analysis of MDD in an effort to identify groups of biologically related genetic variants that are involved in the same molecular function or cellular processes and exhibit a significant level of aggregated association with MDD. In particular, we used a text-mining-based data analysis to prioritize candidate gene sets implicated in MDD and conducted a multi-locus association analysis to look for enriched signals of nominally associated MDD susceptibility loci within each of the gene sets. Our primary analysis is based on the meta-analysis of three large MDD GWAS data sets (total N = 4346 cases and 4430 controls). After correction for multiple testing, we found that genes involved in glutamatergic synaptic neurotransmission were significantly associated with MDD (set-based association P = 6.9 X 10(-4)). This result is consistent with previous studies that support a role of the glutamatergic system in synaptic plasticity and MDD and support the potential utility of targeting glutamatergic neurotransmission in the treatment of MDD

    Metabolic acetate therapy improves phenotype in the tremor rat model of Canavan disease

    Get PDF
    Genetic mutations that severely diminish the activity of aspartoacylase (ASPA) result in the fatal brain dysmyelinating disorder, Canavan disease. There is no effective treatment. ASPA produces free acetate from the concentrated brain metabolite, N-acetylaspartate (NAA). Because acetyl coenzyme A is a key building block for lipid synthesis, we postulated that the inability to catabolize NAA leads to a brain acetate deficiency during a critical period of CNS development, impairing myelination and possibly other aspects of brain development. We tested the hypothesis that acetate supplementation during postnatal myelination would ameliorate the severe phenotype associated with ASPA deficiency using the tremor rat model of Canavan disease. Glyceryltriacetate (GTA) was administered orally to tremor rats starting 7 days after birth, and was continued in food and water after weaning. Motor function, myelin lipids, and brain vacuolation were analyzed in GTA-treated and untreated tremor rats. Significant improvements were observed in motor performance and myelin galactocerebroside content in tremor rats treated with GTA. Further, brain vacuolation was modestly reduced, and these reductions were positively correlated with improved motor performance. We also examined the expression of the acetyl coenzyme A synthesizing enzyme acetyl coenzyme A synthase 1 and found upregulation of expression in tremor rats, with a return to near normal expression levels in GTA-treated tremor rats. These results confirm the critical role played by NAA-derived acetate in brain myelination and development, and demonstrate the potential usefulness of acetate therapy for the treatment of Canavan disease

    Skin tribology: Science friction?

    Get PDF
    The application of tribological knowledge is not just restricted to optimizing mechanical and chemical engineering problems. In fact, effective solutions to friction and wear related questions can be found in our everyday life. An important part is related to skin tribology, as the human skin is frequently one of the interacting surfaces in relative motion. People seem to solve these problems related to skin friction based upon a trial-and-error strategy and based upon on our sense for touch. The question of course rises whether or not a trained tribologist would make different choices based upon a science based strategy? In other words: Is skin friction part of the larger knowledge base that has been generated during the last decades by tribology research groups and which could be referred to as Science Friction? This paper discusses the specific nature of tribological systems that include the human skin and argues that the living nature of skin limits the use of conventional methods. Skin tribology requires in vivo, subject and anatomical location specific test methods. Current predictive friction models can only partially be applied to predict in vivo skin friction. The reason for this is found in limited understanding of the contact mechanics at the asperity level of product-skin interactions. A recently developed model gives the building blocks for enhanced understanding of friction at the micro scale. Only largely simplified power law based equations are currently available as general engineering tools. Finally, the need for friction control is illustrated by elaborating on the role of skin friction on discomfort and comfort. Surface texturing and polymer brush coatings are promising directions as they provide way and means to tailor friction in sliding contacts without the need of major changes to the produc
    corecore