Electrical operation of planar Ge hole spin qubits in an in-plane magnetic field

Abstract

In this work we present a comprehensive theory of spin physics in planar Ge hole quantum dots in an in-plane magnetic field, where the orbital terms play a dominant role in qubit physics, and provide a brief comparison with experimental measurements of the angular dependence of electrically driven spin resonance. We focus the theoretical analysis on electrical spin operation, phonon-induced relaxation, and the existence of coherence sweet spots. We find that the choice of magnetic field orientation makes a substantial difference for the properties of hole spin qubits. Furthermore, although the Schrieffer-Wolff approximation can describe electron dipole spin resonance (EDSR), it does not capture the fundamental spin dynamics underlying qubit coherence. Specifically, we find that: (i) EDSR for in-plane magnetic fields varies non-linearly with the field strength and weaker than for perpendicular magnetic fields; (ii) The EDSR Rabi frequency is maximized when the a.c. electric field is aligned parallel to the magnetic field, and vanishes when the two are perpendicular; (iii) The Rabi ratio T1/TπT_1/T_\pi, i.e. the number of EDSR gate operation per unit relaxation time, is expected to be as large as 5×1055{\times}10^5 at the magnetic fields used experimentally; (iv) The orbital magnetic field terms make the in-plane gg-factor strongly anisotropic in a squeezed dot, in excellent agreement with experimental measurements; (v) The coherence sweet spots do not exist in an in-plane magnetic field, as the orbital magnetic field terms expose the qubit to all components of the defect electric field. These findings will provide a guideline for experiments to design ultrafast, highly coherent hole spin qubits in Ge

    Similar works

    Full text

    thumbnail-image

    Available Versions