164 research outputs found
Analysis of a rapid sea ice retreat event in the Bellingshausen Sea
The winter advance of the sea ice edge in the Bellingshausen Sea is frequently interrupted by periods of rapid retreat lasting a few days. The frequency and duration of such events strongly controls the location of the late winter sea ice edge in this sector of the Antarctic. We examine the dynamics and thermodynamics of a retreat event that occurred in May 2001 using data from a drifting buoy array together with diagnostics from a kinematic/thermodynamic ice growth model and a high-resolution (11 km) regional coupled ocean-ice model. During the retreat event, the ice edge retreated by 250 km over 13 days in response to strong and persistent northerly winds associated with a quasi-stationary low-pressure system. Ice motion in the outer part of the pack was convergent and correlated strongly with local wind forcing. By contrast, in the region closer to the coast, ice motion was less well correlated with wind forcing. Model diagnostics indicate that ice thickening resulting from convergence in the outer pack was largely balanced by basal melting. In the outer pack, ice was in a state close to free drift while, closer to the coast, internal ice stresses became significant. The ocean-ice model simulated the characteristics of the retreat event realistically, giving us confidence in the ability of such models to reproduce ice conditions in this sector
Weddell Sea iceberg drift: Five years of observations
Since 1999, 52 icebergs have been tagged with GPS buoys in the Weddell Seato enable monitoring of their position. The chosen icebergs were of small tomedium size, with a few icebergs larger than 10 km associatedwith the calving of icebergs A38 and A43 from the Ronne Ice Shelf.The majority of icebergs were tagged off Neumayer Station (8E, 70S).It was found that smaller bergs with edges shorter than 200 m had the shortestlife cycle (< 0.5 yr). Iceberg and thus freshwater export out of theWeddell Sea was found to be highly variable. In one year the majority of buoysdeployed remained in the Weddell Sea, constituting about 40 % of the NCEP P-Efreshwater input, whereas in other years all of the tagged icebergs were exported.The observed drifts of icebergs and sea-ice showed a remarkably coherent motion.The analysis of an iceberg - sea-ice buoy array in the western Weddell Seaand an iceberg array in the eastern Weddell Sea showed a coherent sea-iceiceberg drift in sea-ice concentrations above 86 %. Dynamic kinematic parameter(DKP) during the course of coherent movement were low and deviations from the meancourse associated with the passage of low-pressure system. The length scale ofcoherent movement was estimated to be less than 250km; about half the value found forthe Arctic Ocean
SIPEX-2: A study of sea-ice physical, biochemical and ecosystem processes off East Antarctica during spring 2012
This editorial introduces a suite of articles resulting from the second Sea Ice Physics and Ecosystems eXperiment(SIPEX-2) voyage by presenting some background information on the study areaandAntarcticsea-ice conditions,and summarising the key findings from the project.Using the Australian iceb reaker RV Aurora Australis, SIPEX-2 was conducted in the area between 115â125°E and 62â66°S off East Antarctica during September to November 2012. This region had been sampled during two previous experiments,i.e. ARISE in 2003 (Massom etal.,2006a) and SIPEX in 2007(Worbyetal.,2011a). The 2012 voyage combined traditional and newly developed sampling methods with satellite and other data to measure sea-ice physical properties and pro-
cesses on large scales,which provided context for bio geochemical and ecological case studies. Thes pecific goals of the SIPEX-2 project were to:(i)measure the spatial variability in sea-ice and snow-cover properties over small-to regional-length scales;(ii) improve understanding of sea-ice kinematic processes;and(iii)
advance knowledge of the links between sea-ice physical characteristics,sea-ice biogeochemical cycling and ice-associated food-web dynamics.Our field-based activities were designed to inform modelling approaches and to improve our capability to assess impacts of predicted changes in Antarctic sea ice on Southern Ocean biogeochemical cycles and ecosystem function
Extreme events as ecosystems drivers: Ecological consequences of anomalous Southern Hemisphere weather patterns during the 2001/2002 austral spring-summer
The frequency and severity of extreme events associated with global change are both forecast to increase with a concomitant increase expected in perturbations and disruptions of fundamental processes at ecosystem, community and population scales, with potentially catastrophic consequences. Extreme events should thus be viewed as ecosystem drivers, rather than as short term deviations from a perceived ânormâ. To illustrate this, we examined the impacts associated with the extraordinary weather pattern of the austral spring/summer of 2001/2002, and find that patterns of ocean-atmosphere interactions appear linked to a suite of extreme events in Antarctica and more widely across the Southern Hemisphere. In the Antarctic, the extreme events appear related to particular ecological impacts, including the substantial reduction in breeding success of AdĂ©lie penguins at sites in the Antarctic Peninsula as well as for AdĂ©lie penguin and snow petrel colonies in East Antarctica, and the creation of new benthic habitats associated with the disintegration of the Larsen B Ice Shelf. Other major impacts occurred in marine and terrestrial ecosystems at temperate and tropical latitudes. The suite of impacts demonstrates that ecological consequences of extreme events are manifested at fundamental levels in ecosystem processes and produce long-term, persistent effects relative to the short-term durations of the events. Changes in the rates of primary productivity, species mortality, community structure and inter-specific interactions, and changes in trophodynamics were observed as a consequence of the conditions during the 2001/2002 summer. Lasting potential consequences include reaching or exceeding tipping points, trophic cascades and regime shifts
Antarctic penguin response to habitat change as Earth's troposphere reaches 2°C above preindustrial levels
Author Posting. © Ecological Society of America, 2010. This article is posted here by permission of Ecological Society of America for personal use, not for redistribution. The definitive version was published in Ecological Monographs 80 (2010): 49â66, doi:10.1890/08-2289.1.We assess the response of pack ice penguins, Emperor (Aptenodytes forsteri) and AdĂ©lie (Pygoscelis adeliae), to habitat variability and, then, by modeling habitat alterations, the qualitative changes to their populations, size and distribution, as Earth's average tropospheric temperature reaches 2°C above preindustrial levels (ca. 1860), the benchmark set by the European Union in efforts to reduce greenhouse gases. First, we assessed models used in the Intergovernmental Panel on Climate Change Fourth Assessment Report (AR4) on penguin performance duplicating existing conditions in the Southern Ocean. We chose four models appropriate for gauging changes to penguin habitat: GFDL-CM2.1, GFDL-CM2.0, MIROC3.2(hi-res), and MRI-CGCM2.3.2a. Second, we analyzed the composited model ENSEMBLE to estimate the point of 2°C warming (2025â2052) and the projected changes to sea ice coverage (extent, persistence, and concentration), sea ice thickness, wind speeds, precipitation, and air temperatures. Third, we considered studies of ancient colonies and sediment cores and some recent modeling, which indicate the (space/time) large/centennial-scale penguin response to habitat limits of all ice or no ice. Then we considered results of statistical modeling at the temporal interannual-decadal scale in regard to penguin response over a continuum of rather complex, meso- to large-scale habitat conditions, some of which have opposing and others interacting effects. The ENSEMBLE meso/decadal-scale output projects a marked narrowing of penguins' zoogeographic range at the 2°C point. Colonies north of 70° S are projected to decrease or disappear: 50% of Emperor colonies (40% of breeding population) and 75% of AdĂ©lie colonies (70% of breeding population), but limited growth might occur south of 73° S. Net change would result largely from positive responses to increase in polynya persistence at high latitudes, overcome by decreases in pack ice cover at lower latitudes and, particularly for Emperors, ice thickness. AdĂ©lie Penguins might colonize new breeding habitat where concentrated pack ice diverges and/or disintegrating ice shelves expose coastline. Limiting increase will be decreased persistence of pack ice north of the Antarctic Circle, as this species requires daylight in its wintering areas. AdĂ©lies would be affected negatively by increasing snowfall, predicted to increase in certain areas owing to intrusions of warm, moist marine air due to changes in the Polar Jet Stream.This project was funded by the World Wildlife Fund and the
National Science Foundation, NSF grant OPP-0440643 (D. G.
Ainley), and a Marie-Curie Fellowship to S. Jenouvrier
Return of the Maud Rise polynya: climate litmus or sea ice anomaly? [in âState of the Climate in 2017â]
The Maud Rise polynya is a persistent area of open waterwithin the sea ice cover of the Southern Ocean, which overliesan area of elevated topography called Maud Rise (66°S, 3°E)located in the eastern sector of the Weddell Sea (Fig. SB6.1a).It is termed a âWeddell polynyaâ if it grows and migrates westwardinto the central Weddell Sea. This larger sized polynyawas first observed in satellite data in 1974 and recurred for eachof the two subsequent austral winters (Zwally and Gloersen1977; Carsey 1980). Its large size, ~300 000 km2, meant thatit could contribute strongly to the transfer of heat from theocean to the atmosphere in winter and, hence, instigate densewater production and the renewal of deep ocean waters in theWeddell Sea (Gordon 1978). The amount of deep water formedvia this route was estimated at 1â3 Sverdrups (Martinson etal. 1981). The 1974â76 polynya may have been responsible forup to 34% of observed warming of the deep Southern Ocean(Zanowski et al. 2015). Smaller features, perhaps associatedwith topographically driven upwelling of warm waters, havebeen observed subsequently (Comiso and Gordon 1987), buta large polynya had not re-appeared until recently and unexpectedlyduring austral winters 2016 and 2017
Biological responses to change in Antarctic sea ice habitats
Sea ice is a key habitat in the high latitude Southern Ocean and is predicted to change in its extent, thickness and duration in coming decades. The sea-ice cover is instrumental in mediating oceanâatmosphere exchanges and provides an important substrate for organisms from microbes and algae to predators. Antarctic krill, Euphausia superba, is reliant on sea ice during key phases of its life cycle, particularly during the larval stages, for food and refuge from their predators, while other small grazers, including copepods and amphipods, either live in the brine channel system or find food and shelter at the ice-water interface and in gaps between rafted ice blocks. Fish, such as the Antarctic silverfish Pleuragramma antarcticum, use platelet ice (loosely-formed frazil crystals) as an essential hatching and nursery ground. In this paper, we apply the framework of the Marine Ecosystem Assessment for the Southern Ocean (MEASO) to review current knowledge about relationships between sea ice and associated primary production and secondary consumers, their status and the drivers of sea-ice change in this ocean. We then use qualitative network modelling to explore possible responses of lower trophic level sea-ice biota to different perturbations, including warming air and ocean temperatures, increased storminess and reduced annual sea-ice duration. This modelling shows that pelagic algae, copepods, krill and fish are likely to decrease in response to warming temperatures and reduced sea-ice duration, while salp populations will likely increase under conditions of reduced sea-ice duration and increased number of days of >0°C. Differences in responses to these pressures between the five MEASO sectors were also explored. Greater impacts of environmental pressures on ice-related biota occurring presently were found for the West and East Pacific sectors (notably the Ross Sea and western Antarctic Peninsula), with likely flow-on effects to the wider ecosystem. All sectors are expected to be impacted over coming decades. Finally, we highlight priorities for future sea ice biological research to address knowledge gaps in this field
The state of the Martian climate
60°N was +2.0°C, relative to the 1981â2010 average value (Fig. 5.1). This marks a new high for the record. The average annual surface air temperature (SAT) anomaly for 2016 for land stations north of starting in 1900, and is a significant increase over the previous highest value of +1.2°C, which was observed in 2007, 2011, and 2015. Average global annual temperatures also showed record values in 2015 and 2016. Currently, the Arctic is warming at more than twice the rate of lower latitudes
- âŠ