687 research outputs found

    Analytical Description of X-Ray Peaks: Application to L X-Ray Spectra Processing of Lanthanide Elements by Means of the Electron Probe Micro-Analyzer

    Get PDF
    The shape of Lα X-ray peaks analyzed by means of a LiF (200 plane) monochromator was described by a pseudo-Voigt function: P(λ) = 0.35 P1(λ)+ 0.65 P2(λ) where P1(λ) and P2(λ) are a Gaussian and a Lorentzian distribution centered at the same wavelength, with the same amplitude and half-width and in relative proportion 0.35 and 0.65 respectively. For peaks occurring at wavelength greater than ≃ 0.17 nm, a Gaussian offset was added in order to correct the asymmetry of peaks resulting from the monochromator mounting within the spectrometer. The effective wavelength resolution was obtained by quadrature addition of the instrumental resolution and the natural width of the X-ray peaks. It has been shown that the difference in peak width of the L emission peaks of the lanthanide elements resulted from their difference in their natural widths. For these elements, the Lβ2, Lγ1 and Lγ2 were found to be accompanied by non-diagram lines, Lβ14, Lγ9 and Lγ10 respectively. The wavelength separation distances Lβ14-Lβ2, Lγ9-Lγ1 and Lγ10-Lγ2 were found consistent with the distances derived from the plasmon theory

    Structure and dynamics of Oxide Melts and Glasses : a view from multinuclear and high temperature NMR

    Get PDF
    Solid State Nuclear Magnetic Resonance (NMR) experiments allow characterizing the local structure and dynamics of oxide glasses and melts. Thanks to the development of new experiments, it now becomes possible to evidence not only the details of the coordination state of the network formers of glasses but also to characterize the nature of polyatomic molecular motifs extending over several chemical bonds. We present results involving 31P homonuclear experiments that allow description of groups of up to three phosphate units and 27Al/17O heteronuclear that allows evidencing μ3 oxygen bridges in aluminate glasses and rediscussion of the structure of high temperature melts.Comment: Journal of Non-Crystalline Solids (2007) in press; Also available online at: http://crmht.cnrs-orleans.fr/Intranet/Publications/?id=207

    Seismic Response to Injection Well Stimulation in a High-Temperature, High-Permeability Reservoir

    Get PDF
    Fluid injection into the Earth's crust can induce seismic events that cause damage to local infrastructure but also offer valuable insight into seismogenesis. The factors that influence the magnitude, location, and number of induced events remain poorly understood but include injection flow rate and pressure as well as reservoir temperature and permeability. The relationship between injection parameters and injection-induced seismicity in high-temperature, high-permeability reservoirs has not been extensively studied. Here we focus on the Ngatamariki geothermal field in the central Taupō Volcanic Zone, New Zealand, where three stimulation/injection tests have occurred since 2012. We present a catalog of seismicity from 2012 to 2015 created using a matched-filter detection technique. We analyze the stress state in the reservoir during the injection tests from first motion-derived focal mechanisms, yielding an average direction of maximum horizontal compressive stress (SHmax) consistent with the regional NE-SW trend. However, there is significant variation in the direction of maximum compressive stress (σ1), which may reflect geological differences between wells. We use the ratio of injection flow rate to overpressure, referred to as injectivity index, as a proxy for near-well permeability and compare changes in injectivity index to spatiotemporal characteristics of seismicity accompanying each test. Observed increases in injectivity index are generally poorly correlated with seismicity, suggesting that the locations of microearthquakes are not coincident with the zone of stimulation (i.e., increased permeability). Our findings augment a growing body of work suggesting that aseismic opening or slip, rather than seismic shear, is the active process driving well stimulation in many environments

    Fluoride-containing bioactive glasses: Effect of glass design and structure on degradation, pH and apatite formation in simulated body fluid

    Get PDF
    NOTICE: this is the author’s version of a work that was accepted for publication in Acta Biomaterialia. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Acta Biomaterialia, [VOL 6, ISSUE 8, (2010)] DOI: 10.1016/j.actbio.2010.01.04

    Damaged beyond repair? Characterising the damage zone of a fault late in its interseismic cycle, the Alpine Fault, New Zealand

    Get PDF
    X-ray computed tomography (CT) scans of drill-core, recovered from the first phase of the Deep Fault Drilling Project (DFDP-1) through New Zealand\u27s Alpine Fault, provide an excellent opportunity to study the damage zone of a plate-bounding continental scale fault, late in its interseismic cycle. Documentation of the intermediate-macro scale damage zone structures observed in the CT images show that there is no increase in the density of these structures towards the fault\u27s principal slip zones (PSZs), at least within the interval sampled, which is 30 m above and below the PSZs. This is in agreement with independent analysis using borehole televiewer data. Instead, we conclude the density of damage zone structures to correspond to lithology. We find that 72% of fractures are fully healed, by a combination of clays, calcite and quartz, with an additional 24% partially healed. This fracture healing is consistent with the Alpine Fault\u27s late interseismic state, and the fact that the interval of damage zone sampled coincides with an alteration zone, an interval of extensive fluid-rock interaction. These fractures do not impose a reduction of P-wave velocity, as measured by wireline methods. Outside the alteration zone there is indirect evidence of less extensive fracture healing.DFDP-1 was funded by: GNS Science; Victoria University of Wellington; the University of Otago; the University of Auckland; the University of Canterbury; Deutsche Forschungsgemeinschaft and the University of Bremen; Natural Environment Research Council grants NE/J024449/1, NE/G524160/1 and NE/H012486/1 and the University Of Liverpool; and the Marsden Fund of the Royal Society of New Zealand.2018-07-2

    A multinuclear solid state NMR, density functional theory and X-Ray diffraction study of hydrogen bonding in Group I hydrogen dibenzoates

    Get PDF
    An NMR crystallographic approach incorporating multinuclear solid state NMR (SSNMR), X-ray structure determinations and density functional theory (DFT) are used to characterise the H bonding arrangements in benzoic acid (BZA) and the corresponding Group I alkali metal hydrogen dibenzoates (HD) systems. Since the XRD data often cannot precisely confirm the proton position within the hydrogen bond, the relationship between the experimental SSNMR parameters and the ability of gauge included plane augmented wave (GIPAW) DFT to predict them becomes a powerful constraint that can assist with further structure refinement. Both the 1H and 13C MAS NMR methods provide primary descriptions of the H bonding via accurate measurements of the 1H and 13C isotropic chemical shifts, and the individual 13C chemical shift tensor elements; these are unequivocally corroborated by DFT calculations, which together accurately describe the trend of the H bonding strength as the size of the monovalent cation changes. In addition, 17O MAS and DOR NMR form a powerful combination to characterise the O environments, with the DOR technique providing highly resolved 17O NMR data which helps verify unequivocally the number of inequivalent O positions for the conventional 17O MAS NMR to process. Further multinuclear MAS and static NMR studies involving the quadrupolar 7Li, 39K, 87Rb and 133Cs nuclei, and the associated DFT calculations, provide trends and a corroboration of the H bond geometry which assist in the understanding of these arrangements. Even though the crystallographic H positions in each H bonding arrangement reported from the single crystal X-ray studies are prone to uncertainty, the good corroboration between the measured and DFT calculated chemical shift and quadrupole tensor parameters for the Group I alkali species suggest that these reported H positions are reliable

    Self-healing capacity of nuclear glass observed by NMR spectroscopy

    Get PDF
    Safe management of high level nuclear waste is a worldwide significant issue for which vitrification has been selected by many countries. There exists a crucial need for improving our understanding of the ageing of the glass under irradiation. While external irradiation by ions provides a rapid simulation of damage induced by alpha decays, short lived actinide doping is more representative of the reality. Here, we report radiological NMR experiments to compare the damage in International Simplified Glass (ISG) when irradiated by these two methods. In the 0.1 mole percent 244Cm doped glass, accumulation of high alpha decay only shows small modifications of the local structure, in sharp contrast to heavy ion irradiation. These results reveal the ability of the alpha particle to partially repair the damage generated by the heavy recoil nuclei highlighting the radiation resistance of nuclear glass and the difficulty to accurately simulate its behaviour by single ion beam irradiations

    Structural and spatially-resolved studies on the hardening of a commercial resin-modified glass-ionomer cement

    Get PDF
    A commercial photopolymerizable resinmodified glass-ionomer (Fuji II LC) was studied using a variety of nuclear magnetic resonance (NMR) techniques. H and F stray-field imaging (STRAFI) enabled to follow the acid–base reaction kinetics in self-cured (SC) samples. Gelation and maturation processes with 25 min and 40 h average time constants, respectively, were distinguished. In self- & photo-cured (SPC) samples, two processes were also observed, which occurred with 2 s and 47 s average time constants. H, Al and Si magic angle spinning (MAS) NMR, C cross-polarization (CP)/MAS NMR and 27Al multiple quanta (MQ)MAS NMR spectroscopy were used to obtain structural information on the glass and cements that were either SC or SPC. The presence of methacrylate groups was identified in the solid component. Unreacted hydroxyl ethylmethacrylate (HEMA) was detected in self-cured cement. Al data showed that approximately 28% and 20% of Al is leached out from glass particles in SC and SPC samples, respectively. The upfield shift detected in 25Si MAS NMR spectra of the cements is consistent with a decrease in the number of Al species in the second coordination sphere of the silicon structures. Scanning electron microscopy (SEM) showed existence of 3D shrinkage of the cement matrix in photo-cured cements.(undefined
    corecore