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Abstract 

Solid State Nuclear Magnetic Resonance (NMR) experiments allow characterizing the 

local structure and dynamics of oxide glasses and melts. Thanks to the development of new 

experiments, it now becomes possible to evidence not only the details of the coordination 

state of the network formers of glasses but also to characterize the nature of polyatomic 

molecular motifs extending over several chemical bonds. We present results involving 31P 

homonuclear experiments that allow description of groups of up to three phosphate units and 

27Al/17O heteronuclear that allows evidencing µ3 oxygen bridges in aluminate glasses and 

rediscussion of the structure of high temperature melts. 

Introduction 

Oxide glasses are known and used for thousands of years and tuning of properties like 

colour, durability, viscosity of the molten state were mostly known and dominated by glass 

makers. Despite this millenary knowledge, the range of glass forming system of interest is 

still expanding and many non-elucidated points remain in the understanding of the glass and 

melts structure and properties. The aim of this contribution is to underline, from the 
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experimental point of view provided by Nuclear Magnetic Resonance, the relations existing 

between the structure and dynamics of the high temperature molten oxide systems and the 

short and medium range order of their related glasses. 

The strength of Nuclear Magnetic Resonance for describing structure and dynamics of 

amorphous or disorganised system like oxide glasses or melts, comes firstly from its ability to 

selectively observe the environment of the different constitutive atoms (providing that they 

bear a nuclear spin) and secondly from its sensitivity to small variation in the first and second 

coordination sphere of the observed nucleus. This often provides spectral separation of the 

different types of environment[1]. The information derived from NMR experiments are then 

complementary to those obtained by other means : optical spectroscopies, IR or Raman, 

X-Ray absorption, X-Ray or neutrons elastic or inelastic scattering etc… It is important to 

remark that NMR has a much slower characteristic time (ranging from Hz to MHz) than most 

of the above mentioned methods, leading to fundamental differences in the signatures of the 

viscous high temperature molten states. 

One dimensional NMR experiments 

In liquid state in general, and in the high temperature molten state in the case of oxide 

glass forming systems, the mobility is such that only the isotropic traces of the anisotropic 

interactions express in their NMR spectra. Fluctuation of these interactions leads to relaxation 

mechanisms that can allow discussion of the characteristic times of rearrangement and overall 

mobility of the system. In solid state materials and in glasses the anisotropy of the different 

interaction fully express in the static NMR spectra giving broad and often featureless line 

shapes accounting for all the different orientations of the individual structural motifs of the 

glass. Although these broad spectra contain many different information on the conformation 

of the structural motifs (Chemical Shift Anisotropy - CSA), spatial proximity between spins 

(homo- and hetero-nuclear Dipolar interactions), chemical bonds (indirect J coupling), electric 
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field gradient at the nucleus position (Quadrupolar interaction for I>1/2 nuclei), these 

information are often hardly evidenced. Magic Angle Spinning is this unique tool that solid 

state NMR has at hand to average out all (or most) of the anisotropic part of the interactions 

only leaving their traces mimicking (or giving a coarse approach of) the Brownian 

reorientation of the liquid phase. Under rapid Magic Angle Spinning, Chemical Shift is 

averaged to its isotropic value and distribution directly given by the line position and width in 

the case of a dipolar (I=1/2) spin, while the traceless Dipolar interaction is averaged out, and 

the scalar (or isotropic) part of J-coupling is usually small enough to be completely masked in 

a 1D spectrum, even in crystalline phases.  

Phosphates, silicates, alumino-silicates or aluminates oxide glasses structures are 

mostly based on tetrahedral species whose polymerization is characterized by their number of 

bridging oxygens (Qn : Q=P,Si,Al and n the number of bridging oxygens). Figure 1 presents 

the 31P MAS NMR 1D spectra of a (60% PbO-40% P2O5) glass. It shows two broad but 

resolved resonances in a 1/1 ratio that can unambiguously ascribed to end-chain groups (Q1 

750Hz 6.2 ppm width) and middle-chain groups (Q2 1100Hz 9 ppm width) environments. 

Both these lines are considerably broader than that of the corresponding crystalline sample 

(Pb3P4O13 linewidth < 1 ppm) due to the disorder in the glass structure and the loss of long 

range order. In the case of simple binary glasses of phosphates or silicate the broad lines 

corresponding to the various Qn tetrahedral sites are often resolved enough to allow 

quantification of their respective abundance and evaluation of the disproportionation 

equilibrium constants (Kn : 2Qn<->Qn-1+Qn+1)[2]. Figure 2 reports these quantitative results 

for PbO-SiO2[3]and PbO-P2O5[4] binary systems. In lead-phosphate glasses the Kn values 

remain very small which correspond to a binary distribution and indicates that only two types 

of Qn environments can co-exist at a given composition, while in lead-silicate glasses the 

equilibrium constant are much higher, close to that of a randomly constructed network with a 
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competition between lead based and silicon based covalent networks. 207Pb NMR and 

LIII-EXAFS experiments confirmed this interpretation by showing that the coordination 

numbers of Pb in silicate is of 3 to 4 oxygen with short covalent bonds and a very asymmetric 

environment (pyramid with lead at the top) while it is of more than 6 in phosphate glasses 

with a more symmetric environment, behaving more as a network modifier[3-5].  

Polyatomic molecular motifs 

Although these information already give important details on the structure of these 

phosphates or silicate binary glasses, it would be of great interest to obtain a larger scale 

image of the polyatomic molecular motifs constituting these glasses and especially to evaluate 

the length of phosphate chains possibly present in the glass, that makes the difference between 

the long range ordered crystalline phase and the amorphous phase. That type of information 

can be obtained by implementing multidimensional NMR experiments that allow to evidence 

Dipolar[4] or J-coupling[6,7,8] interaction and further use them to build correlation 

experiments separating the different contributions of well defined molecular motifs. Figure 1 

gives a general picture of the possibilities offered by the J-coupling mediated experiments that 

allow to directly evidence the P-O-P bonds bridging phosphate units through J2
P-O-P 

interaction. Let us consider the example of the 60% PbO-40% P2O5 glass already introduced 

above. Its 1D spectrum (fig 1a) shows partly resolved Q1 and Q2 lines with strong broadening 

(750 and 1100Hz) signing the to be understood glass disorder. Because the Q1 and Q2 line 

width is essentially inhomogeneous, due to distribution of frequencies for each individual 

motif, this broadening can be refocused in an echo which is modulated by the small (and 

unresolved) isotropic J2
P-O-P coupling[7]. Figure 1b shows the J-resolved spectrum of the glass 

that reveals the J coupling patterns consisting in a doublet for Q1, and to a triplet for Q2, thus 

justifying the spectral attribution previously made based on the 31P isotropic chemical shift. It 

is also of importance to notice that this experiment clearly shows that the isotropic J-coupling 
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does vary across the 1D lines, typically increasing with decreasing chemical shift. The new 

type of information provided by this experiment is likely to bear important information on the 

covalent bond hybridisation state and geometry. Because this isotropic J-coupling can be 

measured, it can also be used to reveal - or to spectrally edit - different polyatomic molecular 

units in the glass. Figure 1c and 1d respectively show the two-dimensional correlation spectra 

that enable the identification of through-bond connectivity between two linked PO4 tetrahedra 

(fig.1c) [6] and between three linked PO4 tetrahedra (fig.1d) [8]. These experiments, fully 

described in the referenced papers allow spectral separation of dimers, end-chain groups, and 

middle-chain groups when selecting Q-Q pairs (fig.1c) and trimers, end-chain triplets or 

centre-chain triplets when selecting Q-Q-Q triplets (fig.1d). From these experiments it 

becomes possible to identify the different structural motifs constituting these glasses in terms 

of molecular building blocks extending over 6 chemical bonds (O-P-O-P-O-P-O) over lengths 

up to nearly 10Å if we consider a linear chain. Other experiments of the same type now allow 

to describe hetero-nuclear structural motifs of different types involving Al-O[9], Al-O-Si, 

P-O-Si[10] or opening the possibilities of more detailed description of glasses or disordered 

solids at large length scale. 

High Temperature NMR experiments 

Even if most of the resolution is lost when going to static NMR spectra in the general 

case, the very different chemical shift anisotropy of Q3 and Q4 silicon environment can be 

source of enough resolution for evidencing dynamic process occurring close to or above glass 

transition temperature as shown by Stebbins and Farnan in the case of a binary K2O-4SiO2 

composition[11]. They showed that while the two Q3 and Q4 contributions can be resolved 

from their different chemical shift anisotropy or from their isotropic chemical shift, below 

glass temperature, they begin to exchange just above glass transition with characteristic times 

of the order of seconds[12] and finally end up into merging in a unique line in the high 
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temperature molten state. This experiment underlines two important points. First, although 

silicate glasses can be regarded as SiO2 based polymer, the melting of silicate glasses implies 

rapid reconfiguration of the structural motifs through a mechanism that was proposed to 

involve a higher SiO5 coordination state of silicon with oxygen, second that the characteristic 

time scales of NMR spectroscopy allow to explore a large range of time scales involved in 

this mechanism. We can remark that this has been recently extended to below Tg structural 

reorganisation of BO3 and BO4 configurations in borosilicate glasses[13]. The existence of 

higher (and previously unexpected) SiO5 coordination state of silicon was proved 

experimentally by acquiring high quality 29Si NMR spectra[14] with clear effects of quench-

rates and pressure stabilizing these high coordination silicon environments. 

The high temperature NMR setup developed in our laboratory, combining CO2 laser 

heating and aerodynamic levitation allows acquisition of 27Al resolved NMR spectra in 

molten oxide at high temperature with a good sensitivity[15,16]. Figure 3a shows the 

experimental setting and an example of a 27Al spectrum acquired in one scan for a liquid 

molten sample CaAl2O4 at ~2000°C[17]. The sensitivity of this experiment is such that one 

can follow in a time-resolved manner the evolution of the 27Al signal when cooling the sample 

from high temperature, until disappearance of the signal when the liquid becomes too viscous. 

As in the case of the high temperature molten silicate discussed above, we only have a single 

sharp line giving the average chemical shift signature of the rapidly exchanging chemical 

species. This later point is confirmed by independent T1 (spin-lattice) and T2 (spin-spin) 

relaxation measurements giving similar values and reliably measured in the 1D spectrum from 

the linewidth. This relaxation time can be modelled using a simple model of quadrupolar 

relaxation which requires the knowledge of the instantaneous quadrupolar coupling that can 

be estimated from the 27Al MAS NMR spectrum of the corresponding glass at room 

temperature. The obtained correlation times, corresponding to the characteristic time of the 
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rearrangement of aluminium bearing structural units, can be directly compared to 

characteristic times of the macroscopic viscosity with a convincing correspondence in the 

case of aluminates melts[18] (Figure 3b&c). 

Structure and dynamics of alumino-silicates 

In alumino-silicate glasses of more complex composition, aluminium is able to 

substitute silicon in tetrahedral network forming positions, providing charge compensation by 

a neighbouring cation. In such case, the NMR signature of 29Si spectra is much more complex 

and difficult to interpret[19]. Because 29Si Qn species isotropic chemical shifts depend upon 

Al substitution in neighbouring tetrahedra, 29Si silicon spectra are usually broad Gaussian 

lines covering the full range of possible environment. Similarly 27Al aluminium spectra are 

broadened by the combination of a distribution of chemical shifts and a distribution of second 

order quadrupolar interaction[21] and give only average pictures of the structure with possible 

resolution of different coordination states but no resolution of the different Al based Qn 

species except in the case of binary CaO-Al2O3 glasses in which NMR and XANES both 

show proofs of the depolymerization of the AlO4 based network[20]. In alumino-silicate 

glasses, aluminium species with higher coordination were evidenced[22] and quantified[21] 

using a detailed modelling of the 27Al MAS and MQMAS NMR spectra obtained at high 

principal fields. One can also remark that no SiO5 environments have ever been evidenced in 

aluminosilicate compositions. Going further and examining the whole SiO2-Al2O3-CaO phase 

diagram[23], we showed that these AlO5 environments are not confined to the charge 

compensation line or to the hyper-aluminous region of the ternary diagram, where there exist 

a deficit of charge compensators, but that AlO5 species are present, at a level of ~5%, for any 

alumino-silicate composition of this ternary diagram, including those presenting the smallest 

fraction of alumina but excluding the Calcium Aluminates of the CaO-Al2O3 join which 
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nearly exclusively show aluminium in AlO4 coordination state. For C3A composition XANES 

unambiguously shows that Al occupy Q2 environments both in crystal, and glass[20,23]. 

These finding that there exist no or very few AlO5 in compositions close to CaO-Al2O3 

composition is somehow in contradiction with our previous interpretation of chemical shift 

temperature dependence with a negative slope [17]. At that time we proposed to consider that 

there could exist significant amounts of five fold coordinated aluminium in the high 

temperature molten state, based on the thermal dependence of chemical shift and on state of 

the art MD computations. A more detailed study shows that, across the CaO-Al2O3 join, the 

slope of the temperature dependence of the average chemical shift in the high temperature 

molten state drastically changes from a positive value for Al2O3 to very negative (~-4 to 

-5ppm) for composition around CaAl2O4. Indeed we can even remark that all compositions 

able to vitrify in aerodynamic levitation contactless conditions have a slope smaller than 

-2ppm/1000°C (Figure 4a). Stebbins and coworkers recently studied the 17O NMR signature 

of similar composition[24]. They evidenced a significant amount of non bridging oxygen 

atoms and discussed the possibility of a seldom observed µ3 tricluster oxygen linking three 

tetrahedral Al sites that exists in the closely related CA2 (CaAl4O7 - Grossite) crystalline 

phase. Thanks to the development of new methods of hetero-nuclear correlation between 

quadrupolar nuclei through J-coupling at high principal field (750MHz)[9], we could re-

examine this question and show that a {17O}27Al experiment carried out on a CaAl2O4 glass 

was able to clearly evidence the signature of ~5% µ3 tricluster oxygen linked to aluminium 

with chemical shift decreased by 5 ppm per linked tricluster (Figure 4b). It thus appears that 

molecular motif of type µ3[AlO3]3 can be quenched in the glass and do exist in the molten 

state while AlO5 remains negligible, rising a new interpretation of the thermal dependence of 

the 27Al isotropic chemical shift in the CaO-Al2O3 melts.  
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Conclusion 

From the above discussed experimental results we can draw several important points 

about the relations between structure and properties of oxide glasses and their related molten 

states which appear to be closely related. It first clearly appears that in many cases, even if 

most of the structure of the glasses, and consequently of their related high temperature molten 

states are built around a network of µ2 connected tetrahedra (P, Si, Al…), there exist in many 

cases unexpected environments showing up as minor contributions in the glass structures 

(~5% or less) but significantly present and relevant to molecular motifs that can be identified. 

This is the case of SiO5 species in binary alkali silicates[14], AlO5 (AlO6) [21-23] in 

aluminosilicates, violations to Al avoidance principle[25] or tricluster µ3 oxygens[9]. This 

implies that modelling of these complex materials in their solid or molten state will often be 

difficult using limited box sizes. Just consider that 5% of Aluminum species in a glass 

containing 5% Al2O3 in a Calcium Silicate only represent 1 to 2 atoms over 1000 or that 5% 

µ3 oxygens in a CaAl2O4 composition represent less than 3 occurrences in a box of 100 atoms. 

Furthermore Charpentier and coworkers[26] recently showed that a proper rendering of NMR 

parameters from all electrons ab-initio computations in glasses requires a combination of 

classical and ab-initio MD simulation. Going further we also emphasize that an important part 

of what we qualify with the general term of disorder can be described in terms of distribution 

of poly-atomic molecular motifs extending over a much larger length scale than the usual 

concept of coordination.  
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Figure Captions : 
 

Figure 1 Summary of NMR experiments on a 60%PbO-40%P2O5 glass evidencing poly-
atomic molecular motifs with : (a) 1D spectrum, (b) the J resolved spectrum showing 
doublet for Q1 and triplet for Q2 [7], (c) the INADEQUATE experiment evidencing 
pairs of phosphates (Q-Q)[6], and (d) the 3Quantum spectrum evidencing triplets of 
phosphates (Q-Q-Q)[8]. 

 

Figure 2 Quantitative interpretation of 29Si and 31P 1D spectra allowing the 
measurement of disproportionation constants for (a) lead silicate[3] and (b) lead 
phosphate glasses[4]. 

Figure 3 (a) High Temperature aerodynamic levitation NMR setup and a characteristic 
one shot spectrum, (b) temperature dependence of the chemical shift and (c) viscosity 
and NMR correlation times[adapted from ref.17] 

 

Figure 4 (a) Slope of the thermal dependence of average chemical shift in high 
temperature versus composition for the CaO-Al2O3 join. (b) {17O}27Al HMQC 
experiment of CaO-Al2O3 glass at 750 MHz showing clear signature of µ3 tricluster 
oxygens[adapted from ref.9]. 
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Figure 2
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Figure 3
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Figure 4
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