35 research outputs found

    Effects of Smoking and Genotype on the PSR Index of Periodontal Disease in Adults Aged 18–49

    Get PDF
    Studies have found both genetic and environmental influences on chronic periodontitis. The purpose of this study was to examine the relationships among previously identified genetic variants, smoking status, and two periodontal disease-related phenotypes (PSR1 and PSR2) in 625 Caucasian adults (aged 18–49 years). The PSR Index was used to classify participants as affected or unaffected under the PSR1 and PSR2 phenotype definitions. Using logistic regression, we found that the form of the relationship varied by single nucleotide polymorphism (SNP): For rs10457525 and rs12630931, the effects of smoking and genotype on risk were additive; whereas for rs10457526 and rs733048, smoking was not independently associated with affected status once genotype was taken into consideration. In contrast, smoking moderated the relationships of rs3870371 and rs733048 with affected status such that former and never smokers with select genotypes were at increased genetic risk. Thus, for several groups, knowledge of genotype may refine the risk prediction over that which can be determined by knowledge of smoking status alone. Future studies should replicate these findings. These findings provide the foundation for the exploration of novel pathways by which periodontitis may occur

    Genome-Wide Association Study of Periodontal Health Measured by Probing Depth in Adults Ages 18−49 years

    Get PDF
    The etiology of chronic periodontitis clearly includes a heritable component. Our purpose was to perform a small exploratory genome-wide association study in adults ages 18–49 years to nominate genes associated with periodontal disease−related phenotypes for future consideration. Full-mouth periodontal pocket depth probing was performed on participants (N = 673), with affected status defined as two or more sextants with probing depths of 5.5 mm or greater. Two variations of this phenotype that differed in how missing teeth were treated were used in analysis. More than 1.2 million genetic markers across the genome were genotyped or imputed and tested for genetic association. We identified ten suggestive loci (p-value ≤ 1E-5), including genes/loci that have been previously implicated in chronic periodontitis: LAMA2, HAS2, CDH2, ESR1, and the genomic region on chromosome 14q21-22 between SOS2 and NIN. Moreover, we nominated novel loci not previously implicated in chronic periodontitis or related pathways, including the regions 3p22 near OSBPL10 (a lipid receptor implicated in hyperlipidemia), 4p15 near HSP90AB2P (a heat shock pseudogene), 11p15 near GVINP1 (a GTPase pseudogene), 14q31 near SEL1L (an intracellular transporter), and 18q12 in FHOD3 (an actin cytoskeleton regulator). Replication of these results in additional samples is needed. This is one of the first research efforts to identify genetic polymorphisms associated with chronic periodontitis-related phenotypes by the genome-wide association study approach. Though small, efforts such this are needed in order to nominate novel genes and generate new hypotheses for exploration and testing in future studies

    Novel caries loci in children and adults implicated by genome-wide analysis of families

    Get PDF
    Background: Dental caries is a common chronic disease among children and adults alike, posing a substantial health burden. Caries is affected by multiple genetic and environmental factors, and prior studies have found that a substantial proportion of caries susceptibility is genetically inherited. Methods: To identify such genetic factors, we conducted a genome-wide linkage scan in 464 extended families with 2616 individuals from Iowa, Pennsylvania and West Virginia for three dental caries phenotypes: (1) PRIM: dichotomized as zero versus one or more affected primary teeth, (2) QTOT1: age-adjusted quantitative caries measure for both primary and permanent dentitions including pre-cavitated lesions, and (3) QTOT2: age-adjusted quantitative caries excluding pre-cavitated lesions. Genotyping was conducted for approximately 600,000 SNPs on an Illumina platform, pruned to 127,511 uncorrelated SNPs for the analyses reported here. Results: Multipoint non-parametric linkage analyses generated peak LOD scores exceeding 2.0 for eight genomic regions, but no LOD scores above 3.0 were observed. The maximum LOD score for each of the three traits was 2.90 at 1q25.3 for PRIM, 2.38 at 6q25.3 for QTOT1, and 2.76 at 5q23.3 for QTOT2. Some overlap in linkage regions was observed among the phenotypes. Genes with a potential role in dental caries in the eight chromosomal regions include CACNA1E, LAMC2, ALMS1, STAMBP, GXYLT2, SLC12A2, MEGF10, TMEM181, ARID1B, and, as well as genes in several immune gene families. Our results are also concordant with previous findings from association analyses on chromosomes 11 and 19. Conclusions: These multipoint linkage results provide evidence in favor of novel chromosomal regions, while also supporting earlier association findings for these data. Understanding the genetic etiology of dental caries will allow designing personalized treatment plans based on an individual’s genetic risk of disease

    Genome-wide association Scan of dental caries in the permanent dentition

    Get PDF
    Background: Over 90% of adults aged 20 years or older with permanent teeth have suffered from dental caries leading to pain, infection, or even tooth loss. Although caries prevalence has decreased over the past decade, there are still about 23% of dentate adults who have untreated carious lesions in the US. Dental caries is a complex disorder affected by both individual susceptibility and environmental factors. Approximately 35-55% of caries phenotypic variation in the permanent dentition is attributable to genes, though few specific caries genes have been identified. Therefore, we conducted the first genome-wide association study (GWAS) to identify genes affecting susceptibility to caries in adults. Methods: Five independent cohorts were included in this study, totaling more than 7000 participants. For each participant, dental caries was assessed and genetic markers (single nucleotide polymorphisms, SNPs) were genotyped or imputed across the entire genome. Due to the heterogeneity among the five cohorts regarding age, genotyping platform, quality of dental caries assessment, and study design, we first conducted genome-wide association (GWA) analyses on each of the five independent cohorts separately. We then performed three meta-analyses to combine results for: (i) the comparatively younger, Appalachian cohorts (N = 1483) with well-assessed caries phenotype, (ii) the comparatively older, non-Appalachian cohorts (N = 5960) with inferior caries phenotypes, and (iii) all five cohorts (N = 7443). Top ranking genetic loci within and across meta-analyses were scrutinized for biologically plausible roles on caries. Results: Different sets of genes were nominated across the three meta-analyses, especially between the younger and older age cohorts. In general, we identified several suggestive loci (P-value ≤ 10E-05) within or near genes with plausible biological roles for dental caries, including RPS6KA2 and PTK2B, involved in p38-depenedent MAPK signaling, and RHOU and FZD1, involved in the Wnt signaling cascade. Both of these pathways have been implicated in dental caries. ADMTS3 and ISL1 are involved in tooth development, and TLR2 is involved in immune response to oral pathogens. Conclusions: As the first GWAS for dental caries in adults, this study nominated several novel caries genes for future study, which may lead to better understanding of cariogenesis, and ultimately, to improved disease predictions, prevention, and/or treatment

    Detection of Streptococcus mutans Genomic DNA in Human DNA Samples Extracted from Saliva and Blood

    Get PDF
    Caries is a multifactorial disease, and studies aiming to unravel the factors modulating its etiology must consider all known predisposing factors. One major factor is bacterial colonization, and Streptococcus mutans is the main microorganism associated with the initiation of the disease. In our studies, we have access to DNA samples extracted from human saliva and blood. In this report, we tested a real-time PCR assay developed to detect copies of genomic DNA from Streptococcus mutans in 1,424 DNA samples from humans. Our results suggest that we can determine the presence of genomic DNA copies of Streptococcus mutans in both DNA samples from caries-free and caries-affected individuals. However, we were not able to detect the presence of genomic DNA copies of Streptococcus mutans in any DNA samples extracted from peripheral blood, which suggests the assay may not be sensitive enough for this goal. Values of the threshold cycle of the real-time PCR reaction correlate with higher levels of caries experience in children, but this correlation could not be detected for adults

    Detection of Streptococcus mutans Genomic DNA in Human DNA Samples Extracted from Saliva and Blood

    Get PDF
    Caries is a multifactorial disease, and studies aiming to unravel the factors modulating its etiology must consider all known predisposing factors. One major factor is bacterial colonization, and Streptococcus mutans is the main microorganism associated with the initiation of the disease. In our studies, we have access to DNA samples extracted from human saliva and blood. In this report, we tested a real-time PCR assay developed to detect copies of genomic DNA from Streptococcus mutans in 1,424 DNA samples from humans. Our results suggest that we can determine the presence of genomic DNA copies of Streptococcus mutans in both DNA samples from caries-free and caries-affected individuals. However, we were not able to detect the presence of genomic DNA copies of Streptococcus mutans in any DNA samples extracted from peripheral blood, which suggests the assay may not be sensitive enough for this goal. Values of the threshold cycle of the real-time PCR reaction correlate with higher levels of caries experience in children, but this correlation could not be detected for adults

    Heritable patterns of tooth decay in the permanent dentition: principal components and factor analyses

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Dental caries is the result of a complex interplay among environmental, behavioral, and genetic factors, with distinct patterns of decay likely due to specific etiologies. Therefore, global measures of decay, such as the DMFS index, may not be optimal for identifying risk factors that manifest as specific decay patterns, especially if the risk factors such as genetic susceptibility loci have small individual effects. We used two methods to extract patterns of decay from surface-level caries data in order to generate novel phenotypes with which to explore the genetic regulation of caries.</p> <p>Methods</p> <p>The 128 tooth surfaces of the permanent dentition were scored as carious or not by intra-oral examination for 1,068 participants aged 18 to 75 years from 664 biological families. Principal components analysis (PCA) and factor analysis (FA), two methods of identifying underlying patterns without <it>a priori </it>surface classifications, were applied to our data.</p> <p>Results</p> <p>The three strongest caries patterns identified by PCA recaptured variation represented by DMFS index (correlation, r = 0.97), pit and fissure surface caries (r = 0.95), and smooth surface caries (r = 0.89). However, together, these three patterns explained only 37% of the variability in the data, indicating that <it>a priori </it>caries measures are insufficient for fully quantifying caries variation. In comparison, the first pattern identified by FA was strongly correlated with pit and fissure surface caries (r = 0.81), but other identified patterns, including a second pattern representing caries of the maxillary incisors, were not representative of any previously defined caries indices. Some patterns identified by PCA and FA were heritable (h<sup>2 </sup>= 30-65%, p = 0.043-0.006), whereas other patterns were not, indicating both genetic and non-genetic etiologies of individual decay patterns.</p> <p>Conclusions</p> <p>This study demonstrates the use of decay patterns as novel phenotypes to assist in understanding the multifactorial nature of dental caries.</p

    Using genetics to test the causal relationship of total adiposity and periodontitis: Mendelian randomization analyses in the Gene-Lifestyle Interactions and Dental Endpoints (GLIDE) Consortium

    Get PDF
    Background: The observational relationship between obesity and periodontitis is widely known, yet causal evidence is lacking. Our objective was to investigate causal associations between periodontitis and body mass index (BMI).Methods: We performed Mendelian randomization analyses with BMI-associated loci combined in a genetic risk score (GRS) as the instrument for BMI. All analyses were conducted within the Gene-Lifestyle Interactions and Dental Endpoints (GLIDE) Consortium in 13 studies from Europe and the USA, including 49 066 participants with clinically assessed (seven studies, 42.1% of participants) and self-reported (six studies, 57.9% of participants) periodontitis and genotype data (17 672/31 394 with/without periodontitis); 68 761 participants with BMI and genotype data; and 57 871 participants (18 881/38 990 with/without periodontitis) with data on BMI and periodontitis.Results: In the observational meta-analysis of all participants, the pooled crude observational odds ratio (OR) for periodontitis was 1.13 [95% confidence interval (CI): 1.03, 1.24] per standard deviation increase of BMI. Controlling for potential confounders attenuated this estimate (OR = 1.08; 95% CI:1.03, 1.12). For clinically assessed periodontitis, corresponding ORs were 1.25 (95% CI: 1.10, 1.42) and 1.13 (95% CI: 1.10, 1.17), respectively. In the genetic association meta-analysis, the OR for periodontitis was 1.01 (95% CI: 0.99, 1.03) per GRS unit (per one effect allele) in all participants and 1.00 (95% CI: 0.97, 1.03) in participants with clinically assessed periodontitis. The instrumental variable meta-analysis of all participants yielded an OR of 1.05 (95% CI: 0.80, 1.38) per BMI standard deviation, and 0.90 (95% CI: 0.56, 1.46) in participants with clinical data.Conclusions: Our study does not support total adiposity as a causal risk factor for periodontitis, as the point estimate is very close to the null in the causal inference analysis, with wide confidence intervals

    Hundreds of variants clustered in genomic loci and biological pathways affect human height

    Get PDF
    Most common human traits and diseases have a polygenic pattern of inheritance: DNA sequence variants at many genetic loci influence the phenotype. Genome-wide association (GWA) studies have identified more than 600 variants associated with human traits, but these typically explain small fractions of phenotypic variation, raising questions about the use of further studies. Here, using 183,727 individuals, we show that hundreds of genetic variants, in at least 180 loci, influence adult height, a highly heritable and classic polygenic trait. The large number of loci reveals patterns with important implications for genetic studies of common human diseases and traits. First, the 180 loci are not random, but instead are enriched for genes that are connected in biological pathways (P = 0.016) and that underlie skeletal growth defects (P < 0.001). Second, the likely causal gene is often located near the most strongly associated variant: in 13 of 21 loci containing a known skeletal growth gene, that gene was closest to the associated variant. Third, at least 19 loci have multiple independently associated variants, suggesting that allelic heterogeneity is a frequent feature of polygenic traits, that comprehensive explorations of already-discovered loci should discover additional variants and that an appreciable fraction of associated loci may have been identified. Fourth, associated variants are enriched for likely functional effects on genes, being over-represented among variants that alter amino-acid structure of proteins and expression levels of nearby genes. Our data explain approximately 10% of the phenotypic variation in height, and we estimate that unidentified common variants of similar effect sizes would increase this figure to approximately 16% of phenotypic variation (approximately 20% of heritable variation). Although additional approaches are needed to dissect the genetic architecture of polygenic human traits fully, our findings indicate that GWA studies can identify large numbers of loci that implicate biologically relevant genes and pathways.

    Genome-wide association identifies nine common variants associated with fasting proinsulin levels and provides new insights into the pathophysiology of type 2 diabetes.

    Get PDF
    OBJECTIVE: Proinsulin is a precursor of mature insulin and C-peptide. Higher circulating proinsulin levels are associated with impaired β-cell function, raised glucose levels, insulin resistance, and type 2 diabetes (T2D). Studies of the insulin processing pathway could provide new insights about T2D pathophysiology. RESEARCH DESIGN AND METHODS: We have conducted a meta-analysis of genome-wide association tests of ∼2.5 million genotyped or imputed single nucleotide polymorphisms (SNPs) and fasting proinsulin levels in 10,701 nondiabetic adults of European ancestry, with follow-up of 23 loci in up to 16,378 individuals, using additive genetic models adjusted for age, sex, fasting insulin, and study-specific covariates. RESULTS: Nine SNPs at eight loci were associated with proinsulin levels (P < 5 × 10(-8)). Two loci (LARP6 and SGSM2) have not been previously related to metabolic traits, one (MADD) has been associated with fasting glucose, one (PCSK1) has been implicated in obesity, and four (TCF7L2, SLC30A8, VPS13C/C2CD4A/B, and ARAP1, formerly CENTD2) increase T2D risk. The proinsulin-raising allele of ARAP1 was associated with a lower fasting glucose (P = 1.7 × 10(-4)), improved β-cell function (P = 1.1 × 10(-5)), and lower risk of T2D (odds ratio 0.88; P = 7.8 × 10(-6)). Notably, PCSK1 encodes the protein prohormone convertase 1/3, the first enzyme in the insulin processing pathway. A genotype score composed of the nine proinsulin-raising alleles was not associated with coronary disease in two large case-control datasets. CONCLUSIONS: We have identified nine genetic variants associated with fasting proinsulin. Our findings illuminate the biology underlying glucose homeostasis and T2D development in humans and argue against a direct role of proinsulin in coronary artery disease pathogenesis
    corecore