301 research outputs found

    Kinase profiling of liposarcomas using RNAi and drug screening assays identified druggable targets.

    Get PDF
    BackgroundLiposarcoma, the most common soft tissue tumor, is understudied cancer, and limited progress has been made in the treatment of metastatic disease. The Achilles heel of cancer often is their kinases that are excellent therapeutic targets. However, very limited knowledge exists of therapeutic critical kinase targets in liposarcoma that could be potentially used in disease management.MethodsLarge RNAi and small-molecule tyrosine kinase inhibitor screens were performed against the proliferative capacity of liposarcoma cell lines of different subtypes. Each small molecule inhibitor was either FDA approved or in a clinical trial.ResultsScreening assays identified several previously unrecognized targets including PTK2 and KIT in liposarcoma. We also observed that ponatinib, multi-targeted tyrosine kinase inhibitor, was the most effective drug with anti-growth effects against all cell lines. In vitro assays showed that ponatinib inhibited the clonogenic proliferation of liposarcoma, and this anti-growth effect was associated with apoptosis and cell cycle arrest at the G0/G1 phase as well as a decrease in the KIT signaling pathway. In addition, ponatinib inhibited in vivo growth of liposarcoma in a xenograft model.ConclusionsTwo large-scale kinase screenings identified novel liposarcoma targets and a FDA-approved inhibitor, ponatinib with clear anti-liposarcoma activity highlighting its potential therapy for treatment of this deadly tumor

    First Observation of CP Violation in B0->D(*)CP h0 Decays by a Combined Time-Dependent Analysis of BaBar and Belle Data

    Get PDF
    We report a measurement of the time-dependent CP asymmetry of B0->D(*)CP h0 decays, where the light neutral hadron h0 is a pi0, eta or omega meson, and the neutral D meson is reconstructed in the CP eigenstates K+ K-, K0S pi0 or K0S omega. The measurement is performed combining the final data samples collected at the Y(4S) resonance by the BaBar and Belle experiments at the asymmetric-energy B factories PEP-II at SLAC and KEKB at KEK, respectively. The data samples contain ( 471 +/- 3 ) x 10^6 BB pairs recorded by the BaBar detector and ( 772 +/- 11 ) x 10^6, BB pairs recorded by the Belle detector. We measure the CP asymmetry parameters -eta_f S = +0.66 +/- 0.10 (stat.) +/- 0.06 (syst.) and C = -0.02 +/- 0.07 (stat.) +/- 0.03 (syst.). These results correspond to the first observation of CP violation in B0->D(*)CP h0 decays. The hypothesis of no mixing-induced CP violation is excluded in these decays at the level of 5.4 standard deviations.Comment: 9 pages, 2 figures, submitted to Physical Review Letter

    Construction and Analysis of an Integrated Regulatory Network Derived from High-Throughput Sequencing Data

    Get PDF
    We present a network framework for analyzing multi-level regulation in higher eukaryotes based on systematic integration of various high-throughput datasets. The network, namely the integrated regulatory network, consists of three major types of regulation: TF→gene, TF→miRNA and miRNA→gene. We identified the target genes and target miRNAs for a set of TFs based on the ChIP-Seq binding profiles, the predicted targets of miRNAs using annotated 3′UTR sequences and conservation information. Making use of the system-wide RNA-Seq profiles, we classified transcription factors into positive and negative regulators and assigned a sign for each regulatory interaction. Other types of edges such as protein-protein interactions and potential intra-regulations between miRNAs based on the embedding of miRNAs in their host genes were further incorporated. We examined the topological structures of the network, including its hierarchical organization and motif enrichment. We found that transcription factors downstream of the hierarchy distinguish themselves by expressing more uniformly at various tissues, have more interacting partners, and are more likely to be essential. We found an over-representation of notable network motifs, including a FFL in which a miRNA cost-effectively shuts down a transcription factor and its target. We used data of C. elegans from the modENCODE project as a primary model to illustrate our framework, but further verified the results using other two data sets. As more and more genome-wide ChIP-Seq and RNA-Seq data becomes available in the near future, our methods of data integration have various potential applications

    Global 30-day outcomes after bariatric surgery during the COVID-19 pandemic (GENEVA): an international cohort study

    Get PDF

    SPARC: a matricellular regulator of tumorigenesis

    Get PDF
    Although many clinical studies have found a correlation of SPARC expression with malignant progression and patient survival, the mechanisms for SPARC function in tumorigenesis and metastasis remain elusive. The activity of SPARC is context- and cell-type-dependent, which is highlighted by the fact that SPARC has shown seemingly contradictory effects on tumor progression in both clinical correlative studies and in animal models. The capacity of SPARC to dictate tumorigenic phenotype has been attributed to its effects on the bioavailability and signaling of integrins and growth factors/chemokines. These molecular pathways contribute to many physiological events affecting malignant progression, including extracellular matrix remodeling, angiogenesis, immune modulation and metastasis. Given that SPARC is credited with such varied activities, this review presents a comprehensive account of the divergent effects of SPARC in human cancers and mouse models, as well as a description of the potential mechanisms by which SPARC mediates these effects. We aim to provide insight into how a matricellular protein such as SPARC might generate paradoxical, yet relevant, tumor outcomes in order to unify an apparently incongruent collection of scientific literature

    Why Are Outcomes Different for Registry Patients Enrolled Prospectively and Retrospectively? Insights from the Global Anticoagulant Registry in the FIELD-Atrial Fibrillation (GARFIELD-AF).

    Get PDF
    Background: Retrospective and prospective observational studies are designed to reflect real-world evidence on clinical practice, but can yield conflicting results. The GARFIELD-AF Registry includes both methods of enrolment and allows analysis of differences in patient characteristics and outcomes that may result. Methods and Results: Patients with atrial fibrillation (AF) and ≥1 risk factor for stroke at diagnosis of AF were recruited either retrospectively (n = 5069) or prospectively (n = 5501) from 19 countries and then followed prospectively. The retrospectively enrolled cohort comprised patients with established AF (for a least 6, and up to 24 months before enrolment), who were identified retrospectively (and baseline and partial follow-up data were collected from the emedical records) and then followed prospectively between 0-18 months (such that the total time of follow-up was 24 months; data collection Dec-2009 and Oct-2010). In the prospectively enrolled cohort, patients with newly diagnosed AF (≤6 weeks after diagnosis) were recruited between Mar-2010 and Oct-2011 and were followed for 24 months after enrolment. Differences between the cohorts were observed in clinical characteristics, including type of AF, stroke prevention strategies, and event rates. More patients in the retrospectively identified cohort received vitamin K antagonists (62.1% vs. 53.2%) and fewer received non-vitamin K oral anticoagulants (1.8% vs . 4.2%). All-cause mortality rates per 100 person-years during the prospective follow-up (starting the first study visit up to 1 year) were significantly lower in the retrospective than prospectively identified cohort (3.04 [95% CI 2.51 to 3.67] vs . 4.05 [95% CI 3.53 to 4.63]; p = 0.016). Conclusions: Interpretations of data from registries that aim to evaluate the characteristics and outcomes of patients with AF must take account of differences in registry design and the impact of recall bias and survivorship bias that is incurred with retrospective enrolment. Clinical Trial Registration: - URL: http://www.clinicaltrials.gov . Unique identifier for GARFIELD-AF (NCT01090362)

    The Genome of a Pathogenic Rhodococcus: Cooptive Virulence Underpinned by Key Gene Acquisitions

    Get PDF
    We report the genome of the facultative intracellular parasite Rhodococcus equi, the only animal pathogen within the biotechnologically important actinobacterial genus Rhodococcus. The 5.0-Mb R. equi 103S genome is significantly smaller than those of environmental rhodococci. This is due to genome expansion in nonpathogenic species, via a linear gain of paralogous genes and an accelerated genetic flux, rather than reductive evolution in R. equi. The 103S genome lacks the extensive catabolic and secondary metabolic complement of environmental rhodococci, and it displays unique adaptations for host colonization and competition in the short-chain fatty acid–rich intestine and manure of herbivores—two main R. equi reservoirs. Except for a few horizontally acquired (HGT) pathogenicity loci, including a cytoadhesive pilus determinant (rpl) and the virulence plasmid vap pathogenicity island (PAI) required for intramacrophage survival, most of the potential virulence-associated genes identified in R. equi are conserved in environmental rhodococci or have homologs in nonpathogenic Actinobacteria. This suggests a mechanism of virulence evolution based on the cooption of existing core actinobacterial traits, triggered by key host niche–adaptive HGT events. We tested this hypothesis by investigating R. equi virulence plasmid-chromosome crosstalk, by global transcription profiling and expression network analysis. Two chromosomal genes conserved in environmental rhodococci, encoding putative chorismate mutase and anthranilate synthase enzymes involved in aromatic amino acid biosynthesis, were strongly coregulated with vap PAI virulence genes and required for optimal proliferation in macrophages. The regulatory integration of chromosomal metabolic genes under the control of the HGT–acquired plasmid PAI is thus an important element in the cooptive virulence of R. equi

    30-Day morbidity and mortality of bariatric metabolic surgery in adolescence during the COVID-19 pandemic – The GENEVA study

    Get PDF
    Background: Metabolic and bariatric surgery (MBS) is an effective treatment for adolescents with severe obesity. Objectives: This study examined the safety of MBS in adolescents during the coronavirus disease 2019 (COVID-19) pandemic. Methods: This was a global, multicentre and observational cohort study of MBS performed between May 01, 2020, and October 10,2020, in 68 centres from 24 countries. Data collection included in-hospital and 30-day COVID-19 and surgery-specific morbidity/mortality. Results: One hundred and seventy adolescent patients (mean age: 17.75 ± 1.30 years), mostly females (n = 122, 71.8%), underwent MBS during the study period. The mean pre-operative weight and body mass index were 122.16 ± 15.92 kg and 43.7 ± 7.11 kg/m2, respectively. Although majority of patients had pre-operative testing for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (n = 146; 85.9%), only 42.4% (n = 72) of the patients were asked to self-isolate pre-operatively. Two patients developed symptomatic SARS-CoV-2 infection post-operatively (1.2%). The overall complication rate was 5.3% (n = 9). There was no mortality in this cohort. Conclusions: MBS in adolescents with obesity is safe during the COVID-19 pandemic when performed within the context of local precautionary procedures (such as pre-operative testing). The 30-day morbidity rates were similar to those reported pre-pandemic. These data will help facilitate the safe re-introduction of MBS services for this group of patients
    corecore