643 research outputs found

    Artificial intelligence-based software (AID-FOREST) for tree detection: A new framework for fast and accurate forest inventorying using LiDAR point clouds

    Get PDF
    Forest inventories are essential to accurately estimate different dendrometric and forest stand parameters. However, classical forest inventories are time consuming, slow to conduct, sometimes inaccurate and costly. To address this problem, an efficient alternative approach has been sought and designed that will make this type of field work cheaper, faster, more accurate, and easier to complete. The implementation of this concept has required the development of a specifically designed software called "Artificial Intelligence for Digital Forest (AID-FOREST)", which is able to process point clouds obtained via mobile terrestrial laser scanning (MTLS) and then, to provide an array of multiple useful and accurate dendrometric and forest stand parameters. Singular characteristics of this approach are: No data pre-processing is required either pre-treatment of forest stand; fully automatic process once launched; no limitations by the size of the point cloud file and fast computations.To validate AID-FOREST, results provided by this software were compared against the obtained from in-situ classical forest inventories. To guaranty the soundness and generality of the comparison, different tree spe-cies, plot sizes, and tree densities were measured and analysed. A total of 76 plots (10,887 trees) were selected to conduct both a classic forest inventory reference method and a MTLS (ZEB-HORIZON, Geoslam, ltd.) scanning to obtain point clouds for AID-FOREST processing, known as the MTLS-AIDFOREST method. Thus, we compared the data collected by both methods estimating the average number of trees and diameter at breast height (DBH) for each plot. Moreover, 71 additional individual trees were scanned with MTLS and processed by AID-FOREST and were then felled and divided into logs measuring 1 m in length. This allowed us to accurately measure the DBH, total height, and total volume of the stems.When we compared the results obtained with each methodology, the mean detectability was 97% and ranged from 81.3 to 100%, with a bias (underestimation by MTLS-AIDFOREST method) in the number of trees per plot of 2.8% and a relative root-mean-square error (RMSE) of 9.2%. Species, plot size, and tree density did not significantly affect detectability. However, this parameter was significantly affected by the ecosystem visual complexity index (EVCI). The average DBH per plot was underestimated (but was not significantly different from 0) by the MTLS-AIDFOREST, with the average bias for pooled data being 1.8% with a RMSE of 7.5%. Similarly, there was no statistically significant differences between the two distribution functions of the DBH at the 95.0% confidence level.Regarding the individual tree parameters, MTLS-AIDFOREST underestimated DBH by 0.16 % (RMSE = 5.2 %) and overestimated the stem volume (Vt) by 1.37 % (RMSE = 14.3 %, although the BIAS was not statistically significantly different from 0). However, the MTLS-AIDFOREST method overestimated the total height (Ht) of the trees by a mean 1.33 m (5.1 %; relative RMSE = 11.5 %), because of the different height concepts measured by both methodological approaches. Finally, AID-FOREST required 30 to 66 min per ha-1 to fully automatically process the point cloud data from the *.las file corresponding to a given hectare plot. Thus, applying our MTLS-AIDFOREST methodology to make full forest inventories, required a 57.3 % of the time required to perform classical plot forest inventories (excluding the data postprocessing time in the latter case). A free trial of AID -FOREST can be requested at [email protected]

    Nonreferral of possible soft tissue sarcomas in adults: a dangerous omission in policy

    Get PDF
    Introduction. The aim of this study is to compare outcomes in three groups of STS patients treated in our specialist centre: patients referred immediately after an inadequate initial treatment, patients referred after a local recurrence, and patients referred directly, prior to any treatment. Patients and methods. We reviewed all our nonmetastatic extremity-STS patients with a minimum follow-up of 2 years. We compared three patient groups: those referred directly to our centre (group A), those referred after an inadequate initial excision (group B), and patients with local recurrence (group C). Results. The study included 174 patients. Disease-free survival was 73%, 76%, and 28% in groups A, B, and C, respectively (P < .001). Depth, size, and histologic grade influenced the outcome in groups A and B, but not in C. Conclusion. Initial wide surgical treatment is the main factor that determines local control, being even more important than the known intrinsic prognostic factors of tumour size, depth, and histologic grade. The influence on outcome of initial wide local excision (WLE), which is made possible by referral to a specialist centre, is paramount

    Opposite-side flavour tagging of B mesons at the LHCb experiment

    Get PDF
    The calibration and performance of the oppositeside flavour tagging algorithms used for the measurements of time-dependent asymmetries at the LHCb experiment are described. The algorithms have been developed using simulated events and optimized and calibrated with B + →J/ψK +, B0 →J/ψK ∗0 and B0 →D ∗− ÎŒ + ΜΌ decay modes with 0.37 fb−1 of data collected in pp collisions at √ s = 7 TeV during the 2011 physics run. The oppositeside tagging power is determined in the B + → J/ψK + channel to be (2.10 ± 0.08 ± 0.24) %, where the first uncertainty is statistical and the second is systematic

    Differential branching fraction and angular analysis of the decay B0→K∗0ÎŒ+Ό−

    Get PDF
    The angular distribution and differential branching fraction of the decay B 0→ K ∗0 ÎŒ + ÎŒ − are studied using a data sample, collected by the LHCb experiment in pp collisions at s√=7 TeV, corresponding to an integrated luminosity of 1.0 fb−1. Several angular observables are measured in bins of the dimuon invariant mass squared, q 2. A first measurement of the zero-crossing point of the forward-backward asymmetry of the dimuon system is also presented. The zero-crossing point is measured to be q20=4.9±0.9GeV2/c4 , where the uncertainty is the sum of statistical and systematic uncertainties. The results are consistent with the Standard Model predictions

    Measurement of charged particle multiplicities in pppp collisions at s=7{\sqrt{s} =7}TeV in the forward region

    Get PDF
    The charged particle production in proton-proton collisions is studied with the LHCb detector at a centre-of-mass energy of s=7{\sqrt{s} =7}TeV in different intervals of pseudorapidity η\eta. The charged particles are reconstructed close to the interaction region in the vertex detector, which provides high reconstruction efficiency in the η\eta ranges −2.5<η<−2.0-2.5<\eta<-2.0 and 2.0<η<4.52.0<\eta<4.5. The data were taken with a minimum bias trigger, only requiring one or more reconstructed tracks in the vertex detector. By selecting an event sample with at least one track with a transverse momentum greater than 1 GeV/c a hard QCD subsample is investigated. Several event generators are compared with the data; none are able to describe fully the multiplicity distributions or the charged particle density distribution as a function of η\eta. In general, the models underestimate the charged particle production

    Measurements of the branching fractions of the decays B°s → D∓s K± and B°s → DÂŻsπ+

    Get PDF
    The decay mode B°s → D∓s K± allows for one of the theoretically cleanest measurements of the CKM angle Îł through the study of time-dependent CP violation. This paper reports a measurement of its branching fraction relative to the Cabibbo-favoured mode B°s → DÂŻsπ+ based on a data sample corresponding to 0.37 fbÂŻÂč of proton-proton collisions at √s = 7TeV collected in 2011 with the LHCb detector. In addition, the ratio of B meson production fractions fs/fd, determined from semileptonic decays, together with the known branching fraction of the control channel B°s → DÂŻsπ+ is used to perform an absolute measurement of the branching fractions: B(B°s → DÂŻsπ+) = (2.95 ± 0.05 ± 0.17 -0.22 +0.18) × 10ÂŻÂł ; B(B°s → D∓s K±) = (1.90 ± 0.12 ± 0.13 -0.14 +0.12) × 10ÂŻ4 ; where the first uncertainty is statistical, the second the experimental systematic uncertainty, and the third the uncertainty due to f s/f

    Methodologic issues and approaches to spatial epidemiology

    Get PDF
    Spatial epidemiology is increasingly being used to assess health risks associated with environmental hazards. Risk patterns tend to have both a temporal and a spatial component; thus, spatial epidemiology must combine methods from epidemiology, statistics, and geographic information science. Recent statistical advances in spatial epidemiology include the use of smoothing in risk maps to create an interpretable risk surface, the extension of spatial models to incorporate the time dimension, and the combination of individual- and area-level information. Advances in geographic information systems and the growing availability of modeling packages have led to an improvement in exposure assessment. Techniques drawn from geographic information science are being developed to enable the visualization of uncertainty and ensure more meaningful inferences are made from data. When public health concerns related to the environment arise, it is essential to address such anxieties appropriately and in a timely manner. Tools designed to facilitate the investigation process are being developed, although the availability of complete and clean health data, and appropriate exposure data often remain limiting factors

    Observation of excited Lambda_b0 baryons

    Get PDF
    Using pp collision data corresponding to 1.0 fb-1 integrated luminosity collected by the LHCb detector, two narrow states are observed in the Lambda_b0pi+pi- spectrum with masses 5911.97 +- 0.12(stat) +- 0.02(syst) +- 0.66(Lambda_b0 mass) MeV/c^2 and 5919.77 +- 0.08(stat) +- 0.02(syst) +- 0.66(Lambda_b0 mass) MeV/c^2. The significances of the observations are 5.2 and 10.2 standard deviations, respectively. These states are interpreted as the orbitally-excited Lambda_b0 baryons, Lambda_b*0(5912) and Lambda_b*0(5920).Comment: Replaced by version published in Phys. Rev. Lett, modified fit with better mass resolution treatmen

    First evidence of direct CP violation in charmless two-body decays of Bs mesons

    Get PDF
    Using a data sample corresponding to an integrated luminosity of 0.35 fb−1\mathrm{fb}^{-1} collected by LHCb in 2011, we report the first evidence of CP violation in the decays of Bs0B^0_s mesons to K±π∓K^\pm \pi^\mp pairs, ACP(Bs0→Kπ)=0.27±0.08 (stat)±0.02 (syst)A_{CP}(B^0_s \rightarrow K \pi)=0.27 \pm 0.08\,\mathrm{(stat)} \pm 0.02\,\mathrm{(syst)}, with a significance of 3.3σ\sigma. Furthermore, we report the first observation of CP violation in B0B^0 decays at a hadron collider, ACP(B0→Kπ)=−0.088±0.011 (stat)±0.008 (syst)A_{CP}(B^0 \rightarrow K\pi)=-0.088 \pm 0.011\,\mathrm{(stat)} \pm 0.008\,\mathrm{(syst)}, with a significance exceeding 6σ\sigma.Comment: 8 pages, 2 figures, 2 tables; v2 with minor changes after journal revie

    Strong constraints on the rare decays Bs -> mu+ mu- and B0 -> mu+ mu-

    Get PDF
    A search for Bs -> mu+ mu- and B0 -> mu+ mu- decays is performed using 1.0 fb^-1 of pp collision data collected at \sqrt{s}=7 TeV with the LHCb experiment at the Large Hadron Collider. For both decays the number of observed events is consistent with expectation from background and Standard Model signal predictions. Upper limits on the branching fractions are determined to be BR(Bs -> mu+ mu-) mu+ mu-) < 1.0 (0.81) x 10^-9 at 95% (90%) confidence level.Comment: 2+6 pages; 4 figures; Accepted for publication in Physical Review Letter
    • 

    corecore