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In this article, we review some of the major
limitations facing spatial epidemiology and
discuss emerging techniques that can help
overcome some of these issues. We introduce
readers to several tools recently developed to
enable epidemiologists and public health
practitioners to undertake increasingly sophis-
ticated spatial analyses. Such tools form one
part of an increasing number of national
environment and public health tracking pro-
grams, which are being set up to encourage
and exploit the linkage of environmental and
health data. 

The assessment of risk of adverse health
effects from environmental hazards and the
analysis of the geographic variation of disease
risks as well as cluster detection are areas of
increasing public interest and draw on
research from a number of different disci-
plines (Elliott et al. 2000; Rushton and Elliott
2003). Such disease-mapping, cluster, and risk
assessment studies require both accurate and
detailed population and health data, as well as
clearly defined exposure assessments (Jarup
2004; Nieuwenhuijsen et al. 2005). The
increased availability of spatial environmental,
health, and population data combined with
improved statistical methods and spatial
analysis techniques has fueled an increase in
spatial epidemiologic studies, which assess the
geographic distribution of potential health
risks and their association with environmental
risk factors. The ability to rapidly locate dis-
ease clusters, assess the spatial distribution of
disease risk, and link environmental data and
health outcomes provides a powerful tool for
the evaluation of spatial relationships between
disease and environmental hazards.

The availability and quality of geographi-
cally referenced data on population, health out-
comes, and environmental risk factors are
crucial to any spatial epidemiologic analysis.
Preferably, those data will have exact and accu-
rate associated spatial and temporal informa-
tion, but very often such data are available only
as aggregated summaries. Ideally, detailed infor-
mation for a study population would be used,
including individual characteristics, movements,
personal exposures, and subsequent health
records. Although individual-level health data
may exist, confounder information and expo-
sure data rarely, if ever, exist at the individual
level, so some simplifications must be imposed
(Elliott et al. 2000). Local geographically linked
health and population data are, however,
becoming increasingly available, which enables
the analysis of small-area variations in health
risk. Such data offer some advantages and chal-
lenges to spatial risk assessment.

Developing Statistical
Approaches to Spatial
Epidemiology
Because of data limitations, most spatial epi-
demiology studies use data aggregated at the
area level. Several statistical techniques and
tools are available to calculate area-level risks
together with confidence intervals as a measure
of the uncertainty associated with the esti-
mated risks. Standardizing summary rates
allows the effect of known risk factors, such as
age, sex, and socioeconomic status, to be taken
into account and can take the form of indirect
or direct standardization.

The most common summary measure for
mapping disease risk is the standardized

morbidity/mortality ratio (SMR). This method
of indirect standardization, which compares the
number of cases observed in the study popula-
tion with the number of cases expected using
age-specific rates from a standard population,
can be problematic in small areas or in cases of
rare diseases. In these situations, the estimates
will be dominated by sampling variability
(Elliott et al. 2000). The dependence of the age
and sex weights in the structure of the study
population (denominator value) means that
SMR measures are not directly comparable
between different exposure groups and should
not, therefore, be used in cases where the popu-
lation structure is significantly different
between the comparison groups.

An alternative would be to use so-called
comparative mortality figures, which compare
the number of expected cases in the standard
population (derived from strata-specific disease
rates in each exposure group) with the number
observed. Such direct standardization allows
valid comparison of risks in different exposure
groups, but does require substantial numbers
of cases in each exposure category and accurate
assessment of the age-specific incidence pro-
portions for the study population observed.
For rare diseases or at the small geographic
level, numbers of cases are usually so few that
the incidence proportions observed may be sta-
tistically unstable (Jarup and Best 2003), and
SMRs are usually used, although the caveats
noted above should be borne in mind.

Confidence intervals are usually reported
together with the risk measure provided. The
calculation of confidence intervals relies on
either the statistical assumption of approxi-
mate normality for the distribution of the risk
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indicator, or a suitable mathematical transfor-
mation (e.g., logarithmic). While an assump-
tion of approximate normality may hold
when working with large numbers, this will
not be true when sparseness exists. When
using low count data, it is common to use an
“exact approach” to calculate confidence
intervals, which is based on the Poisson distri-
bution (Esteve et al. 1994).

The investigation of the spatial variation
in disease outcome patterns is also important
in locating the areas with highest risk in epi-
demiologic analysis. This is usually done using
either “global” or “focalized” clustering analy-
ses, or disease mapping. In the context of epi-
demiology, clustering considers the spatial
aggregation of disease cases in relation to the
pattern of noncases or population at risk. A
disease is said to show spatial clustering if
there is any residual spatial variation in risk
beyond that explained by the background
population reference. This residual variation,
also known as overdispersion, may be attribut-
able to either a true extra-aggregation of the
cases in one or more areas, or to dependence
between the observations. Overdispersion can
be caused by a number of factors, such as an
environmental hazard, the existence of an
infectious agent, or variations in genetic sus-
ceptibility, all of which may vary spatially. The
presence of overdispersion is usually explored
using hypothesis tests that check for homo-
geneity (e.g., chi-square test), autocorrelation
[e.g., test based on Moran’s index (Moran
1950)], or both [e.g., Tango’s test (Tango
1995, 2000)]. Cluster location techniques are
also based on hypothesis-testing methods,
whereby the study region is literally scanned
for clusters by superimposing a number of cir-
cular (or elliptical) windows to determine the
group of contiguous areas with the most sig-
nificant excess risk (Besag and Newell 1991;
Kulldorff and Nagarwalla 1995; Openshaw
et al. 1987). Individual data (e.g., case–control
data) can also be used to analyze the spatial
variation of disease risk. Indeed, versions exist
of both Besag and Newell’s (1991) and
Kulldorff and Nagarwalla’s (1995) methods
for dealing with individual data in cluster loca-
tion studies. The estimation of disease risk sur-
faces, using statistical point process techniques
with case–control data (Kelsall and Diggle
1998), offers another approach. In this
method, the surface of risk is obtained as the
ratio of the intensity functions of both pat-
terns (estimated using kernel-based methods),
and the level of clustering in both cases and
controls is compared using Ripley’s K func-
tion (Ripley 1981).

Disease-mapping methods deal with the
estimation of the spatial distribution of disease
risk. Small-area analyses can also mean that
data are sparse; small populations often have
small numbers of observed and expected

health outcomes and, therefore, unstable risk
estimates. Bayesian hierarchical models have
significantly helped to cope with sparseness in
disease-mapping studies (Best et al. 2005).
These models shrink unstable risks toward the
local mean risk by “borrowing” information
between areas. This results in an adaptive
smoothing approach whereby risks in areas
with more information (e.g., urban areas) are
less smoothed than in areas that exhibit higher
sampling variation (typically those with low
number of cases), and thus produce more sta-
ble estimates of the pattern of underlying dis-
ease risk (Richardson et al. 2004). However,
although raw risks can produce “noisy” maps
that are difficult to interpret, oversmoothed
maps may produce a homogeneous risk sur-
face, masking the true risk distribution.

Ecologic regression models are commonly
used to assess association between risk factors
and health outcomes at the area level. The
overdispersion phenomenon mentioned above
prevents the use of standard generalized linear
models (GLM) (McCullagh and Nelder 1989)
such as Poisson and logistic regression that
assume independence between observations.
Ignoring spatial autocorrelation, often present
in this type of data, may lead to biased estima-
tion of the regression coefficients and underes-
timation of the uncertainty surrounding them
(i.e., falsely) narrower confidence intervals
(Schabenberge and Gotway 2005). To address
this problem, GLMs are usually extended by
including random effects in the linear predic-
tor. These random effects are in turn assigned
a joint normal multivariate distribution whose
covariance matrix models the spatial autocor-
relation structure. These models are a particu-
lar class of multilevel or hierarchical models
and inference can be made under the Bayesian
or frequentist paradigm (Schabenberge and
Gotway 2005). In the latter case, depending
on whether the inference is made condition-
ally or marginally, this extension leads, respec-
tively, to generalized linear mixed models
(McCulloch and Searle 2001) or to general-
ized estimated equations (Hanley et al. 2003).

Developing Geographic
Approaches to Spatial
Epidemiology
The spatial component of health data can play
a crucial part in helping explain variability in
risk because health status, environmental haz-
ards, population numbers, demographic and
socioeconomic profiles, and other relevant
characteristics (e.g., susceptibility and expo-
sures) all vary across space. In this sense, geo-
graphic space varies uniquely in different
locations and at different times and creates
unique places in which people live and work.
Geography defines the spatial context and
character in which health risks occur. Any
movement between places is significant

(Wakefield et al. 2001); pollution and other
hazards that form concentrations can be modi-
fied as they move through the environment
and affect different places in different ways,
whereas spatial patterns in risk will be compli-
cated by differences in susceptibility and by
variations that arise simply because popula-
tions are unique to particular places.

The importance of geographic informa-
tion science is increasingly recognized in rela-
tion to spatial epidemiologic research because
it provides the fundamental geographic con-
text to exploring spatial patterns in data. A
geographic information system (GIS) provides
an integrated set of tools that allow both the
analytical manipulation and the visual repre-
sentation of spatial data. In the context of epi-
demiology and public health, this provides a
powerful aid to the analysis and understanding
of the relationships between geography, the
environment, and human health. Geographic
information science and GIS are also being
increasingly relied upon for exposure assess-
ment. GIS can be used for simple spatial
analysis, in line with Tobler’s first law of geog-
raphy (Tobler 1970), which states that all
things are related, but near things are more
strongly related than distant ones; or can be
extended to data analysis algorithms that allow
spatial analysis with more complex models.
Linking exposure and disease began with sim-
ple location mapping, and to date, most epi-
demiologic analyses have used only simple
spatial interrogation and analysis, for example,
using distance measurements to identify at-
risk populations from known point pollution
sources such as industrial plants and landfill
sites (Aylin et al. 2001; Elliott et al. 2001;
Hodgson et al. 2004), linear sources such as
roads and rivers (English et al. 1999;
Verkasalo et al. 2004), and modeled pollutant
dispersion (Hodgson et al. 2007; Ihrig et al.
1988). More complex data analysis algorithms
for estimation, prediction, and simulation
have been proposed (Openshaw 1998) and are
increasingly being implemented, often as addi-
tional tools developed for use within propri-
etary GIS software. Despite developments in
this area and the increasing recognition of spa-
tially explicit processes in determining disease
risk, the use of spatial information beyond
recording spatial location and mapping disease
risk remains rare.

Developing Tools for Spatial
Epidemiology
Increasingly, software tools that integrate spe-
cialist statistical methodologies and spatial
analysis are being developed for use in epi-
demiology and public health. Many of the
advanced statistical methods of cluster investi-
gation and disease mapping are not part of the
routine knowledge of the public health spe-
cialist (Morris and Wakefield 2000; Waller
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and Lawson 1995), and the ability to access
tools that automate such complex techniques
can assist in the advancement of epidemiologic
analysis. The “black box” nature of such mod-
els might be seen in a negative light, and can
potentially lead users to be less aware of their
data or how they are being analyzed, but in
many cases these models offer excellent data
exploration tools. It should be noted, however,
that these tools cannot overcome the numer-
ous issues inherent with small-area spatial epi-
demiology, nor can meaningful output be
produced with poor-quality exposure, health,
or population data. Nonetheless, in many
cases they can offer a significant time advan-
tage over traditional methods of analysis. 

In this section we outline several tools that
have been developed for epidemiology or pub-
lic health. This list concentrates on tools that
allow, as a minimum, some mapping function,
but specifically some spatial analysis of data.
This list is by no means exhaustive, and a
number of other spatial statistical software
packages are widely used in spatial epidemiol-
ogy and public health that allow connection to
GIS or that produce results that can be subse-
quently displayed in a mapping package or
GIS [e.g., SaTScan (http://www.satscan.org),
Clusterseer 2 (http://www.terraseer.com/
products_clusterseer.php), Epimap (http://
www.cdc.gov/epiinfo/about.htm)].

HealthMapper was developed by the
World Health Organization as a tool for sur-
veillance and disease mapping (World Health
Organization 1999). Its main focus is on
African countries, where it is being used in
programs to control infectious diseases,
including Guinea worm disease, malaria,
HIV/AIDS, leprosy, and tuberculosis. It con-
sists of three components: a standardized geo-
graphic database with information on
boundaries at different geographic levels (e.g.,
community, village) as well as on demogra-
phy; a data manager, which is an interface
between the core geo-referenced database and
user-supplied databases that also allows the
creation of reports and summary tables; and a
mapping interface with interactive maps and
graphs for visualization of information. The
system’s capabilities for epidemiologic analysis
are rather limited because it is more oriented
to the descriptive component of the distribu-
tion and magnitude of health risks and their
determinants. It runs on a Windows operat-
ing system, and distribution is either free or
inexpensive based on institutional agreements
with the World Health Organization.

SIGEpi [Sistemas de Información
Geográfica en Salud (Martinez et al. 2001)]
was developed by the Pan-American Health
Organization to strengthen the analytical
resources in epidemiology and public health
in the region of the Americas. It includes a
number of tools that allow interrogation of

spatial data, as well as methods for analyzing
data on health outcomes and determinants,
such as descriptive and exploratory tech-
niques, smoothing models for disease map-
ping, spatial clustering, and construction of
composite health indexes. Risk analysis can
be carried out to assess the association
between environmental indicators and health
outcomes, at both individual and aggregated
levels. It also has an interface to identify criti-
cal areas or population subgroups using com-
plex conditional expressions based on
covariates and indicators, and geographic
analysis tools. The software is distributed
with an inexpensive license and runs on a
Windows operating system.

GeoDa, developed at the Spatial Analysis
Lab, University of Illinois (https://www.
geoda.uiuc.edu/), was originally intended to
provide a link between statistical software and
Environmental Systems Research Institute’s
ESRI ArcView (version 3.x; ESRI, Redlands,
CA, USA) GIS, but it has since been devel-
oped as a standalone application, written in
C++, that works under any Microsoft
Windows–compliant operating system
(Anselin 2003). It offers a number of spatial
analysis functions and mapping tools, includ-
ing the calculation of raw rates (as a ratio of
event count to base population at risk) and
relative risk or excess risk (as a ratio of
observed events over expected). Furthermore,
the rates can be smoothed using three differ-
ent methods: empirical Bayes, a spatial win-
dow average (using total number of events in
the window), and spatial empirical Bayes
using the window average as the reference of
adjustment (rather than the overall mean).

The Rapid Inquiry Facility (RIF) devel-
oped at the U.K. Small Area Health Statistics
Unit integrates advanced methods in statis-
tics, spatial analysis, and spatial epidemiology
to allow assessment of the health risks related
to environmental exposure, producing disease
maps with and without statistical smoothing.
The RIF was originally intended to facilitate
the estimation of risks for any given condition
for a population within defined areas around
a point source, relative to the local population
in a local reference region within the United
Kingdom (Aylin et al. 1999). The RIF was
further developed for use in Europe in
the European Health and Environment
Information System for Exposure and Disease
Mapping and Risk Assessment (EUROHEIS)
project (EUROHEIS 2003). Within the
framework of the U.S. Centers for Disease
Control and Prevention’s Environmental
Public Health Tracking (EPHT) program
(http://www.cdc.gov/nceh/tracking/), the RIF
has been redeveloped in Visual Basic and
works as an application that is embedded in
ESRI ArcGIS (version 9 and higher). The
RIF takes advantage of open database connec-
tivity to connect to an external database
where geocoded health and population data
are stored. These data sets are then used for
analysis, and results are displayed in the GIS.
The risk analysis allows the user to calculate
rates and relative risks within user-defined
distance bands or other user-defined areas
around one or more point or area sources
(Figure 1). The disease-mapping functionality
of the RIF allows a user to produce maps of
directly standardized rates and indirectly stan-
dardized risks. It also allows smoothing of the

Methodologic issues and approaches to spatial epidemiology

Environmental Health Perspectives • VOLUME 116 | NUMBER 8 | August 2008 1107
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relative risks via empirical Bayesian estima-
tion. The RIF is currently being further devel-
oped to include visualization of spatial
uncertainty and integration with other rele-
vant software, such as WinBUGS and
SaTScan. It runs on a Windows operating
system, and it is intended that the software
will eventually be distributed as freeware.

Methodologic Issues
and Advances
Data problems. As stated above, data limita-
tions often require that spatial epidemiology
analyses be carried out at an ecologic level.
Although ecologic studies can be useful for
detecting associations between exposure distri-
butions and disease occurrence, the use of
aggregated data does have associated problems.

Results can be affected by selection bias if
the underlying population and health data are
inaccurate and incomplete. Although census
data may be available at a detailed level of
(dis)aggregation (e.g., output area, census
block group, municipalities, etc.), in many
countries census areas are large, population
data are not released, and censuses are unreli-
able. In addition, such data are usually col-
lected for a single snapshot in time, every
decade, for instance, meaning any changes in
populations between census counts will add
to the uncertainty and unreliability in these
data. An important source of this type of bias
is the ascertainment of health registries, which
often exhibit geographic as well as temporal
variation (Forand et al. 2002). With rare
health events, these errors or variations in the
small-area health and population counts can
result in major uncertainties.

Spurious associations may also be due to
information bias because generally the data
used in spatial epidemiology studies, and
specifically exposure data, are actually proxies
that will not have been collected for that pur-
pose and therefore may well not offer the most
appropriate information. Misclassification can
also occur because of inaccuracies in the loca-
tion of cases and populations, which would
directly affect the validity of any epidemio-
logic study, potentially introducing spurious
temporal or spatial patterns in risk (Bonner
et al. 2003; Oliver et al. 2005). The effect of
any geocoding errors will depend on the spa-
tial variation of the population or sources of
risk, although greater positional errors are
likely in rural rather than urban addresses
(Ward et al. 2005). Population migration will
introduce exposure misclassification and
potentially introduce errors in temporal or
spatial patterns in risk (Arnold 1999). This is
especially problematic for outcomes with long
latency periods between exposure commence-
ment and disease onset, but in many cases, the
latency periods, migration, and relevant expo-
sure metrics are not well characterized. In

exposure terms, both differential and nondif-
ferential misclassification can occur, for exam-
ple, when environmental measures do not
accurately reflect actual exposure, and may
lead to biased study results and/or a reduction
in study power.

Because boundary data used for popula-
tion and health data in epidemiologic studies
tend to be administrative boundaries rather
than physical boundaries, the boundary loca-
tions can, and do, change over time. Area
names and codes can also change, which can
be further complicated by the fact that differ-
ent government departments can develop dif-
ferent coding systems for administrative
geographies, or use slightly different names
for the same area. Inconsistent geography is
problematic for any spatial and/or temporal
study that spans time periods when boundary
changes have occurred and is a major problem
when trying to produce and compare mean-
ingful statistics over time.

The geographic resolution at which the
study is carried out may also have an impact
on the results. Health risks are often mapped
to relatively arbitrary administrative areas
(e.g., the level at which population and
covariate data are available), but risks can be
sensitive to changes in the scale of output,
known as the “modifiable area unit problem”
(Openshaw 1984). Grouping data at different
levels of spatial resolution (e.g., wards, census
tracts, regions) or aggregating data to different
areal arrangements will inevitably lead to vari-
ation in the results, which may affect the
interpretation of the findings.

In the context of cluster analysis, the
impact of boundary tightening (also known as
the Texas sharpshooter effect) must be con-
sidered. A narrowly defined underlying popu-
lation will give rise to a lower number of
expected cases and a greater estimated excess
risk. The effects of boundary tightening will
be associated with the selection of the study
area, time frame, age and sex groups, and
diagnostic categories. When investigating
risks around a putative source of pollution,
although there might be a basis for investigat-
ing the population living in very close prox-
imity to the source, thought should be given
to whether the size of this “exposed” popula-
tion is sufficient to provide a meaningful risk
estimate. Although a power calculation might
not be appropriate in a cluster analysis, some
consideration as to the likely statistical signifi-
cance of the observed effect should be given
to establish how informative the results are
likely to be. Detecting whether an identified
“cluster” has any epidemiologic significance
and even identifying causation are rarely pos-
sible post hoc. Ideally, cluster investigations
should be confined to highly specific expo-
sure–disease associations with high antici-
pated relative risks (Olsen et al. 1996).

Results obtained solely from aggregate
(ecologi) data should not be used for making
assumptions about the nature of an associa-
tion at the individual level (ecologic fallacy).
Factors associated with national or regional
disease rates may not necessarily be associated
with disease in individuals (Morgenstern
1998). Using small-area data reduces some of
the components of ecologic bias created by
within-area heterogeneity but by no means
rules this bias out. Small-area studies also
allow local effects (e.g., impacts of point
sources of pollution) to be investigated
(Elliott and Wartenberg 2004). In terms of
exposure data, one of the strengths of the
group-level data is that they can be more
accurate than the corresponding individual
exposures (Richardson 1992). Indeed, for cer-
tain exposure measures, misclassification in
the group estimate will have less of an influ-
ence on the resultant risk estimates than will
misclassification in the individual estimate
(Armstrong 2004).

Advances in statistical methods in the last
decade include the extension of spatial dis-
ease-mapping models to incorporate the time
dimension (see, e.g., Knorr-Held 2000;
Waller et al. 1997). They aim at splitting the
relative risk into main spatial and temporal
effects as well as space–time interaction. In
the same spirit of the purely spatial models,
“strength” of information is borrowed across
time points, as well. The use of space–time
models to investigate patterns of disease is dis-
cussed in detail by Abellan et al. (2008).
More recent is the joint analysis of two or
more related diseases in space (Held et al.
2005; Knorr-Held and Best 2001) or in space
and time (Richardson et al. 2006), where
again the borrowing of information is allowed
across diseases, in addition to space and time.
Ecologic studies have also benefited from the
combination of individual- and area-level
information recently proposed by Wakefield
(2004) and Jackson et al. (2006). This new
multilevel methodology aims to obtain the
individual-level effects of exposure in disease
risk using the area-level data supplemented
with small samples of individual-level data.
Although an analysis based on area-level data
may be subject to ecologic bias, an analysis
based on individual-level data would lack the
statistical power needed to analyze the small-
area variation on disease risk. The combina-
tion of both corrects the ecologic bias in the
estimated effect while preserving the statistical
power of the analysis.

Uncertainty. Interpretation and decision
making with spatial data should be done with
knowledge of their nature and quality or relia-
bility (Buttenfield and Beard 1994; Longley
et al. 2005). From the acquisition of data
from recorded physical features through to
geo-visualization, information may undergo a
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number of transformations to produce
derived data. Data may be converted between
feature type (e.g., point, line, or area), inter-
polated, simplified, sampled, or quantified,
particularly because spatial representation is
usually a decision of the analyst rather an
inherent feature of the data. Derived data can
then be displayed using a variety of geo-visu-
alization techniques (Cheung and Shi 2004;
Schneider 2001). Any of these stages may
affect uncertainty associated with the data.

It is common practice in epidemiology to
present relative risks with confidence intervals,
but results of spatial epidemiologic analyses
are often presented as mapped relative risks
with no attempt to report the uncertainty in
the risk estimates. The Bayesian approaches
mentioned above provide a rich output in
terms of uncertainty measures associated to
the relative risks, such as 95% credibility inter-
vals and ranks of the risks (Ferrándiz ks being
> 1 (Jarup et al. 2002). The latter were used
by Richardson et al. (2004) to propose rules
for detecting areas with high risk; the authors
proved that they are highly specific while hav-
ing reasonable sensitivity. Whichever measure
is preferred, uncertainty should be reported to
help the interpretation of the relative risks.
Figure 2 shows an example of output from the
RIF that combines the posterior abilities with
the smoothed relative risks.

Where information exists to quantify
uncertainty, a number of different techniques
can be used to incorporate these data with
other spatial data to facilitate interpretation.
A single bivariate choropleth map can convey
information about geographic variation of
risk estimates combined with their accompa-
nying uncertainty (Monmonier 2006).
Effective use of color is crucial to producing
readable bivariate maps; for example, opacity
can be used to clearly represent uncertainty
(Drecki 2002). Bivariate choropleth maps will
be less effective in cases where a large number
of different classes are required. Several con-
ceptually simple methods can also be
employed to effectively combine uncertainty
with spatial estimates, including color satura-
tion, where highest uncertainty is depicted by
desaturated colors (de Cola 2002), or decreas-
ing boundary crispness with increased uncer-
tainty. Multiple maps can be used to report
uncertainty separately either in a static form
or including animation of the spatial distribu-
tion of risk values (Goovaerts 2006).

Following the work of Richardson et al.
(2004), posterior probability values can be used
to aid interpretation of areas of actual excess
risk. Areas where the relative risk is > 1 and the
posterior probabilities are > 0.8 can be more
confidently considered as having high risk.

In some cases, there may be a need to intro-
duce uncertainty cartographically. Introducing
some positional error or aggregating data can be

used to preserve spatial anonymity. These data
could then be used to produce detailed disease-
distribution maps, but the needs of epidemiol-
ogy must be very carefully balanced with
demands to preserve individual privacy (Leitner
and Curtis 2004), particularly in the case of dot
mapping, where a point is assumed to depict an
exact location.

Conclusions

The increase in data availability, methods, and
technology is clearly important for the future of
spatial epidemiology, but it also presents signifi-
cant challenges. Using approaches from a num-
ber of different disciplines, such as statistics and
geographic information science, epidemiologic
studies demand a diverse approach and conse-
quently higher demands on personnel.
Multidisciplinary teams must work closely to
ensure that adopted approaches are fully appre-
ciated and complement each other, rather than
merely introducing or, at worst, multiplying
errors. For institutions and health departments
handling public health concerns related to the
environment, this carries an appreciable cost.

The availability of software tools designed
to facilitate the investigation process is key to
efficiently handling issues where public health
concerns related to the environment arise.
The ability to use specialist statistical method-
ologies and GIS without requiring detailed
knowledge of such approaches enables com-
plex analysis to be carried out without unrea-
sonable demands in terms of expertise and
time. Consequently, understanding the local
data issues and the interpretation of the ana-
lytic output can remain a crucial component

of the task, rather than being diluted by the
overwhelming demands on time and cost of
undertaking the analyses. These software tools
cannot overcome the numerous data issues
detailed in this article but can go some way
toward more rapidly linking and analyzing
environmental and health data.

The availability of geocoded data provides
great opportunities for epidemiologic
research, offering the ability to carry out
large-scale studies over long time periods.
Data are rarely collected specifically for epi-
demiologic research and therefore may not be
completely appropriate for the analysis being
undertaken. Analysis must consider not only
the appropriateness of the method and the
available data, but also the inevitable simplifi-
cation that occurs when attempting to model
real-world phenomena.

Initiatives to build nationwide tracking pro-
grams that provide integrated health and envi-
ronmental data have recently begun. In the
United States, the Centers for Disease Control
and Prevention’s EPHT program identified
that there were no existing systems, at either the
state or the national level, that enabled linkage
and, therefore, monitoring of relationships
among hazards, exposures, and health effects.
This initiative recognizes the importance and
future need of a more standardized approach to
data collection and storage. In the United
Kingdom, the Health Protection Agency has
also proposed to create a national environmen-
tal health tracking system that links environ-
mental chemicals, health, exposure, and other
factors in an effort to better understand the
burden of disease attributable to environmental
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Figure 2. Smoothed risk of lung cancer incidence, with posterior probabilities: Greater London, ward level,
1999–2003.
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factors in the United Kingdom. The scope
and importance of such schemes should not
be underestimated because they not only pro-
vide sources for suitable data and tools for epi-
demiology but also lead to a more specific,
integrated, and standard approach to data col-
lection and analysis. Effective epidemiologic
analysis of data trends over time and space can
help drive public health policy.
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