84 research outputs found

    Meta-Analysis Reveals Challenges and Gaps for Genome-to-Phenome Research Underpinning Plant Drought Response

    Get PDF
    Severe drought conditions and extreme weather events are increasing worldwide with climate change, threatening the persistence of native plant communities and ecosystems. Many studies have investigated the genomic basis of plant responses to drought. However, the extent of this research throughout the plant kingdom is unclear, particularly among species critical for the sustainability of natural ecosystems. This study aimed to broaden our understanding of genome-to-phenome (G2P) connections in drought-stressed plants and identify focal taxa for future research. Bioinformatics pipelines were developed to mine and link information from databases and abstracts from 7730 publications. This approach identified 1634 genes involved in drought responses among 497 plant taxa. Most (83.30%) of these species have been classified for human use, and most G2P interactions have been described within model organisms or crop species. Our analysis identifies several gaps in G2P research literature and database connectivity, with 21% of abstracts being linked to gene and taxonomy data in NCBI. Abstract text mining was more successful at identifying potential G2P pathways, with 34% of abstracts containing gene, taxa, and phenotype information. Expanding G2P studies to include non-model plants, especially those that are adapted to drought stress, will help advance our understanding of drought responsive G2P pathways

    A Haploid Pseudo-Chromosome Genome Assembly for a Keystone Sagebrush Species of Western North American Rangelands

    Get PDF
    Increased ecological disturbances, species invasions, and climate change are creating severe conservation problems for several plant species that are widespread and foundational. Understanding the genetic diversity of these species and how it relates to adaptation to these stressors are necessary for guiding conservation and restoration efforts. This need is particularly acute for big sagebrush (Artemisia tridentata; Asteraceae), which was once the dominant shrub over 1,000,000 km2 in western North America but has since retracted by half and thus has become the target of one of the largest restoration seeding efforts globally. Here, we present the first reference-quality genome assembly for an ecologically important subspecies of big sagebrush (A. tridentata subsp. tridentata) based on short and long reads, as well as chromatin proximity ligation data analyzed using the HiRise pipeline. The final 4.2-Gb assembly consists of 5,492 scaffolds, with nine pseudo-chromosomal scaffolds (nine scaffolds comprising at least 90% of the assembled genome; n = 9). The assembly contains an estimated 43,377 genes based on ab initio gene discovery and transcriptional data analyzed using the MAKER pipeline, with 91.37% of BUSCOs being completely assembled. The final assembly was highly repetitive, with repeat elements comprising 77.99% of the genome, making the Artemisia tridentata subsp. tridentata genome one of the most highly repetitive plant genomes to be sequenced and assembled. This genome assembly advances studies on plant adaptation to drought and heat stress and provides a valuable tool for future genomic research

    A haploid pseudo-chromosome genome assembly for a keystone sagebrush species of western North American rangelands

    Get PDF
    Increased ecological disturbances, species invasions, and climate change are creating severe conservation problems for several plant species that are widespread and foundational. Understanding the genetic diversity of these species and how it relates to adaptation to these stressors are necessary for guiding conservation and restoration efforts. This need is particularly acute for big sagebrush (Artemisia tridentata; Asteraceae), which was once the dominant shrub over 1,000,000 km2 in western North America but has since retracted by half and thus has become the target of one of the largest restoration seeding efforts globally. Here, we present the first reference-quality genome assembly for an ecologically important subspecies of big sagebrush (A. tridentata subsp. tridentata) based on short and long reads, as well as chromatin proximity ligation data analyzed using the HiRise pipeline. The final 4.2-Gb assembly consists of 5,492 scaffolds, with nine pseudo-chromosomal scaffolds (nine scaffolds comprising at least 90% of the assembled genome; n = 9). The assembly contains an estimated 43,377 genes based on ab initio gene discovery and transcriptional data analyzed using the MAKER pipeline, with 91.37% of BUSCOs being completely assembled. The final assembly was highly repetitive, with repeat elements comprising 77.99% of the genome, making the Artemisia tridentata subsp. tridentata genome one of the most highly repetitive plant genomes to be sequenced and assembled. This genome assembly advances studies on plant adaptation to drought and heat stress and provides a valuable tool for future genomic research.This research was made possible by 2 NSF Idaho EPSCoR grants (award numbers OIA-1757324 and OIA-1826801), as well as a Dovetail Genomics Tree of Life Award.Introduction Materials and methods Sample collection, in vitro tissue propagation, and biomass production Flow cytometry and genome complexity analysis PacBio and Omni-C sequence data generation PacBio long-read de novo assembly and validation Pseudomolecule construction with HiRise Genome annotation RNA sequencing Repeat identification Functional annotation Results and discussion Validation of genome assembly and annotation Genome complexity and evidence of past polyploidization Comparing the A. tridentata and A. annua genome assemblies Applications of the sagebrush reference genome Data availability Acknowledgments Literature cite

    Epidemiology of community-onset Staphylococcus aureus infections in pediatric patients: an experience at a Children's Hospital in central Illinois

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The nation-wide concern over methicillin-resistant <it>Staphylococcus aureus </it>(MRSA) has prompted many clinicians to use vancomycin when approaching patients with suspected staphylococcal infections. We sought to characterize the epidemiology of community-onset <it>S. aureus </it>infections in hospitalized children to assist local clinicians in providing appropriate empiric antimicrobial therapy.</p> <p>Methods</p> <p>From January 2005–June 2008, children (0–18 years old) admitted to the Children's Hospital of Illinois with community-onset <it>S. aureus </it>infections were identified by a computer-assisted laboratory-based surveillance and medical record review.</p> <p>Results</p> <p>Of 199 patients, 67 (34%) had invasive infections, and 132 (66%) had skin and soft tissue infections (SSTIs). Among patients with invasive infections, <it>S. aureus </it>isolates were more likely to be susceptible to methicillin (MSSA 63% vs. MRSA 37%), whereas patients with SSTIs, <it>S. aureus </it>isolates were more likely to be resistant to methicillin (MRSA 64% vs. MSSA 36%). Bacteremia and musculoskeletal infections were the most common invasive infections in both groups of <it>S. aureus</it>. Pneumonia with empyema was more likely to be caused by MRSA (<it>P </it>= 0.02). The majority (~90%) of MRSA isolates were non-multidrug resistant, even in the presence of healthcare-associated risk factors.</p> <p>Conclusion</p> <p>Epidemiological data at the local level is important for antimicrobial decision-making. MSSA remains an important pathogen causing invasive community-onset <it>S. aureus </it>infections among hospitalized children. In our hospital, nafcillin in combination with vancomycin is recommended empiric therapy in critically ill patients with suspected invasive staphylococcal infections. Because up to 25% of MSSA circulating in our area are clindamycin-resistant, clindamycin should be used cautiously as empiric monotherapy in patients with suspected invasive staphylococcal infections.</p

    MSH3 polymorphisms and protein levels affect CAG repeat instability in huntington's disease mice

    Get PDF
    Expansions of trinucleotide CAG/CTG repeats in somatic tissues are thought to contribute to ongoing disease progression through an affected individual's life with Huntington's disease or myotonic dystrophy. Broad ranges of repeat instability arise between individuals with expanded repeats, suggesting the existence of modifiers of repeat instability. Mice with expanded CAG/CTG repeats show variable levels of instability depending upon mouse strain. However, to date the genetic modifiers underlying these differences have not been identified. We show that in liver and striatum the R6/1 Huntington's disease (HD) (CAG)~100 transgene, when present in a congenic C57BL/6J (B6) background, incurred expansion-biased repeat mutations, whereas the repeat was stable in a congenic BALB/cByJ (CBy) background. Reciprocal congenic mice revealed the Msh3 gene as the determinant for the differences in repeat instability. Expansion bias was observed in congenic mice homozygous for the B6 Msh3 gene on a CBy background, while the CAG tract was stabilized in congenics homozygous for the CBy Msh3 gene on a B6 background. The CAG stabilization was as dramatic as genetic deficiency of Msh2. The B6 and CBy Msh3 genes had identical promoters but differed in coding regions and showed strikingly different protein levels. B6 MSH3 variant protein is highly expressed and associated with CAG expansions, while the CBy MSH3 variant protein is expressed at barely detectable levels, associating with CAG stability. The DHFR protein, which is divergently transcribed from a promoter shared by the Msh3 gene, did not show varied levels between mouse strains. Thus, naturally occurring MSH3 protein polymorphisms are modifiers of CAG repeat instability, likely through variable MSH3 protein stability. Since evidence supports that somatic CAG instability is a modifier and predictor of disease, our data are consistent with the hypothesis that variable levels of CAG instability associated with polymorphisms of DNA repair genes may have prognostic implications for various repeat-associated diseases

    Dietary patterns of adults living in Ouagadougou and their association with overweight

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Urbanization in developing countries comes along with changes in food habits and living conditions and with an increase in overweight and associated health risks. The objective of the study was to describe dietary patterns of adults in Ouagadougou and to study their relationship with anthropometric status of the subjects.</p> <p>Methods</p> <p>A qualitative food frequency questionnaire was administered to 1,072 adults living in two contrasted districts of Ouagadougou. Dietary patterns were defined by principal component analysis and described by multivariate analysis. Logistic regression was used to study their association with overweight.</p> <p>Results</p> <p>The diet was mainly made of cereals, vegetables and fats from vegetable sources. The two first components of the principal component analysis were interpreted respectively as a "snacking" score and as a "modern foods" score. Both scores were positively and independently associated with the economic level of households and with food expenditures (p ≤ 0.001 for both). The "snacking" score was higher for younger people (p = 0.004), for people having a formal occupation (p = 0.006), for those never married (p = 0.005), whereas the "modern foods" score was associated with ethnic group (p = 0.032) and district of residence (p < 0.001). Thirty-six percent of women and 14.5% of men were overweight (Body Mass Index > 25 kg/m<sup>2</sup>). A higher "modern foods" score was associated with a higher prevalence of overweight when confounding factors were accounted for (OR = 1.19 [95% CI 1.03-1.36]) but there was no relationship between overweight and the "snacking" score.</p> <p>Conclusions</p> <p>Modernisation of types of foods consumed was associated with the living conditions and the environment and with an increased risk of overweight. This should be accounted for to promote better nutrition and prevent non communicable diseases.</p

    Trans-ancestry genome-wide association meta-analysis of prostate cancer identifies new susceptibility loci and informs genetic risk prediction.

    Get PDF
    Prostate cancer is a highly heritable disease with large disparities in incidence rates across ancestry populations. We conducted a multiancestry meta-analysis of prostate cancer genome-wide association studies (107,247 cases and 127,006 controls) and identified 86 new genetic risk variants independently associated with prostate cancer risk, bringing the total to 269 known risk variants. The top genetic risk score (GRS) decile was associated with odds ratios that ranged from 5.06 (95% confidence interval (CI), 4.84-5.29) for men of European ancestry to 3.74 (95% CI, 3.36-4.17) for men of African ancestry. Men of African ancestry were estimated to have a mean GRS that was 2.18-times higher (95% CI, 2.14-2.22), and men of East Asian ancestry 0.73-times lower (95% CI, 0.71-0.76), than men of European ancestry. These findings support the role of germline variation contributing to population differences in prostate cancer risk, with the GRS offering an approach for personalized risk prediction

    Clinical Sequencing Exploratory Research Consortium: Accelerating Evidence-Based Practice of Genomic Medicine

    Get PDF
    Despite rapid technical progress and demonstrable effectiveness for some types of diagnosis and therapy, much remains to be learned about clinical genome and exome sequencing (CGES) and its role within the practice of medicine. The Clinical Sequencing Exploratory Research (CSER) consortium includes 18 extramural research projects, one National Human Genome Research Institute (NHGRI) intramural project, and a coordinating center funded by the NHGRI and National Cancer Institute. The consortium is exploring analytic and clinical validity and utility, as well as the ethical, legal, and social implications of sequencing via multidisciplinary approaches; it has thus far recruited 5,577 participants across a spectrum of symptomatic and healthy children and adults by utilizing both germline and cancer sequencing. The CSER consortium is analyzing data and creating publically available procedures and tools related to participant preferences and consent, variant classification, disclosure and management of primary and secondary findings, health outcomes, and integration with electronic health records. Future research directions will refine measures of clinical utility of CGES in both germline and somatic testing, evaluate the use of CGES for screening in healthy individuals, explore the penetrance of pathogenic variants through extensive phenotyping, reduce discordances in public databases of genes and variants, examine social and ethnic disparities in the provision of genomics services, explore regulatory issues, and estimate the value and downstream costs of sequencing. The CSER consortium has established a shared community of research sites by using diverse approaches to pursue the evidence-based development of best practices in genomic medicine

    Common Genetic Variation And Age at Onset Of Anorexia Nervosa

    Get PDF
    Background Genetics and biology may influence the age at onset of anorexia nervosa (AN). The aims of this study were to determine whether common genetic variation contributes to AN age at onset and to investigate the genetic associations between age at onset of AN and age at menarche. Methods A secondary analysis of the Psychiatric Genomics Consortium genome-wide association study (GWAS) of AN was performed which included 9,335 cases and 31,981 screened controls, all from European ancestries. We conducted GWASs of age at onset, early-onset AN (< 13 years), and typical-onset AN, and genetic correlation, genetic risk score, and Mendelian randomization analyses. Results Two loci were genome-wide significant in the typical-onset AN GWAS. Heritability estimates (SNP-h2) were 0.01-0.04 for age at onset, 0.16-0.25 for early-onset AN, and 0.17-0.25 for typical-onset AN. Early- and typical-onset AN showed distinct genetic correlation patterns with putative risk factors for AN. Specifically, early-onset AN was significantly genetically correlated with younger age at menarche, and typical-onset AN was significantly negatively genetically correlated with anthropometric traits. Genetic risk scores for age at onset and early-onset AN estimated from independent GWASs significantly predicted age at onset. Mendelian randomization analysis suggested a causal link between younger age at menarche and early-onset AN. Conclusions Our results provide evidence consistent with a common variant genetic basis for age at onset and implicate biological pathways regulating menarche and reproduction.Peer reviewe
    corecore