54 research outputs found

    Biodiversity of Myxomycetes from the Monte Desert of Argentina

    Get PDF
    A biodiversity survey for myxomycetes was carried out in the Monte Desert (Argentina) and surrounding areas in November 2006 and late February and March 2007. Specimens were collected in seven different provinces (Catamarca, Jujuy, La Rioja, Salta, San Juan, San Luis and Tucumán), between 23º and 33º S latitude, and a total of 105 localities were sampled. Cacti and succulent plants were the most common type of substrate investigated, but shrubs and herbs characteristic of this biome were also included in the survey. Almost six hundred specimens of myxomycetes from 72 different species in 22 genera were collected either in the field, or from moist chamber cultures prepared with samples of plant material obtained from the same collecting sites. The results include 1 species new to science, Macbrideola andina three more species recently described based on material from this survey, 5 species cited for the first time for the Neotropics, 11 new records for South America and 38 new records for Argentina. Taxonomic comments on rare or unusual species are included and illustrated with photographs by LM and SEM. Data are presented on the development of some species and microenvironmental factors are discussed. An analysis of the biodiversity of myxomycetes in this area, and a comparison with other desert areas, are included.Con el objetivo de estudiar la biodiversidad de Myxomycetes en el Desierto de Monte (Argentina) y áreas circundantes, se realizó un muestreo en los meses de noviembre de 2006 y febrero y marzo de 2007. Se recolectaron especímenes en un total de 105 localidades pertenecientes a siete provincias (Catamarca, Jujuy, La Rioja, Salta, San Juan, San Luis y Tucumán), situadas entre los paralelos 23º y 33º de latitud sur. Los cactus y plantas suculentas fueron los tipos de sustratos más estudiados, pero también se analizaron arbustos y plantas herbáceas características de este bioma. Casi 600 especímenes de mixomicetes pertenecientes a 72 especies y 22 géneros fueron recolectados en el campo o se obtuvieron en el laboratorio, por cultivo en cámara húmeda, a partir de plantas procedentes de las mismas localidades. Los resultados incluyen una nueva especie, Macbrideola andina, otras tres recientemente descritas y basadas en material de este estudio, 5 especies que se citan por primera vez para el Neotrópico, 11 nuevos registros para América del Sur y 38 nuevos registros para Argentina. Se añaden comentarios taxonómicos e ilustraciones fotográficas, tanto con microscopía óptica como electró ni ca, de aquellas especies raras o poco comunes. Se discuten nuevos datos sobre el desarrollo de algunas especies y cómo influyen determinados factores microambientales. También se incluye un análisis de la biodiversidad de mixomicetes en esta zona árida y se compara con la obtenida en otros desiertos de América

    Brane inflation and the WMAP data: a Bayesian analysis

    Get PDF
    The Wilkinson Microwave Anisotropy Probe (WMAP) constraints on string inspired ''brane inflation'' are investigated. Here, the inflaton field is interpreted as the distance between two branes placed in a flux-enriched background geometry and has a Dirac-Born-Infeld (DBI) kinetic term. Our method relies on an exact numerical integration of the inflationary power spectra coupled to a Markov-Chain Monte-Carlo exploration of the parameter space. This analysis is valid for any perturbative value of the string coupling constant and of the string length, and includes a phenomenological modelling of the reheating era to describe the post-inflationary evolution. It is found that the data favour a scenario where inflation stops by violation of the slow-roll conditions well before brane annihilation, rather than by tachyonic instability. Concerning the background geometry, it is established that log(v) > -10 at 95% confidence level (CL), where "v" is the dimensionless ratio of the five-dimensional sub-manifold at the base of the six-dimensional warped conifold geometry to the volume of the unit five-sphere. The reheating energy scale remains poorly constrained, Treh > 20 GeV at 95% CL, for an extreme equation of state (wreh ~ -1/3) only. Assuming the string length is known, the favoured values of the string coupling and of the Ramond-Ramond total background charge appear to be correlated. Finally, the stochastic regime (without and with volume effects) is studied using a perturbative treatment of the Langevin equation. The validity of such an approximate scheme is discussed and shown to be too limited for a full characterisation of the quantum effects.Comment: 65 pages, 15 figures, uses iopart. Shortened version, updated references. Matches publication up to appendix B kept on the arXi

    Copy Number Variation of KIR Genes Influences HIV-1 Control

    Get PDF
    The authors that the number of activating and inhibitory KIR genes varies between individuals and plays a role in the regulation of immune mechanisms that determine HIV-1 control

    Microbiological testing of adults hospitalised with community-acquired pneumonia: An international study

    Get PDF
    This study aimed to describe real-life microbiological testing of adults hospitalised with community-acquired pneumonia (CAP) and to assess concordance with the 2007 Infectious Diseases Society of America (IDSA)/American Thoracic Society (ATS) and 2011 European Respiratory Society (ERS) CAP guidelines. This was a cohort study based on the Global Initiative for Methicillin-resistant Staphylococcus aureus Pneumonia (GLIMP) database, which contains point-prevalence data on adults hospitalised with CAP across 54 countries during 2015. In total, 3702 patients were included. Testing was performed in 3217 patients, and included blood culture (71.1%), sputum culture (61.8%), Legionella urinary antigen test (30.1%), pneumococcal urinary antigen test (30.0%), viral testing (14.9%), acute-phase serology (8.8%), bronchoalveolar lavage culture (8.4%) and pleural fluid culture (3.2%). A pathogen was detected in 1173 (36.5%) patients. Testing attitudes varied significantly according to geography and disease severity. Testing was concordant with IDSA/ATS and ERS guidelines in 16.7% and 23.9% of patients, respectively. IDSA/ATS concordance was higher in Europe than in North America (21.5% versus 9.8%; p<0.01), while ERS concordance was higher in North America than in Europe (33.5% versus 19.5%; p<0.01). Testing practices of adults hospitalised with CAP varied significantly by geography and disease severity. There was a wide discordance between real-life testing practices and IDSA/ATS/ERS guideline recommendations

    Atypical pathogens in hospitalized patients with community-acquired pneumonia: A worldwide perspective

    Get PDF
    Background: Empirical antibiotic coverage for atypical pathogens in community-acquired pneumonia (CAP) has long been debated, mainly because of a lack of epidemiological data. We aimed to assess both testing for atypical pathogens and their prevalence in hospitalized patients with CAP worldwide, especially in relation with disease severity. Methods: A secondary analysis of the GLIMP database, an international, multicentre, point-prevalence study of adult patients admitted for CAP in 222 hospitals across 6 continents in 2015, was performed. The study evaluated frequency of testing for atypical pathogens, including L. pneumophila, M. pneumoniae, C. pneumoniae, and their prevalence. Risk factors for testing and prevalence for atypical pathogens were assessed through univariate analysis. Results: Among 3702 CAP patients 1250 (33.8%) underwent at least one test for atypical pathogens. Testing varies greatly among countries and its frequency was higher in Europe than elsewhere (46.0% vs. 12.7%, respectively, p < 0.0001). Detection of L. pneumophila urinary antigen was the most common test performed worldwide (32.0%). Patients with severe CAP were less likely to be tested for both atypical pathogens considered together (30.5% vs. 35.0%, p = 0.009) and specifically for legionellosis (28.3% vs. 33.5%, p = 0.003) than the rest of the population. Similarly, L. pneumophila testing was lower in ICU patients. At least one atypical pathogen was isolated in 62 patients (4.7%), including M. pneumoniae (26/251 patients, 10.3%), L. pneumophila (30/1186 patients, 2.5%), and C. pneumoniae (8/228 patients, 3.5%). Patients with CAP due to atypical pathogens were significantly younger, showed less cardiovascular, renal, and metabolic comorbidities in comparison to adult patients hospitalized due to non-atypical pathogen CAP. Conclusions: Testing for atypical pathogens in patients admitted for CAP in poorly standardized in real life and does not mirror atypical prevalence in different settings. Further evidence on the impact of atypical pathogens, expecially in the low-income countries, is needed to guidelines implementation

    Prevalence and etiology of community-acquired pneumonia in immunocompromised patients

    Get PDF
    Background. The correct management of immunocompromised patients with pneumonia is debated. We evaluated the prevalence, risk factors, and characteristics of immunocompromised patients coming from the community with pneumonia. Methods. We conducted a secondary analysis of an international, multicenter study enrolling adult patients coming from the community with pneumonia and hospitalized in 222 hospitals in 54 countries worldwide. Risk factors for immunocompromise included AIDS, aplastic anemia, asplenia, hematological cancer, chemotherapy, neutropenia, biological drug use, lung transplantation, chronic steroid use, and solid tumor. Results. At least 1 risk factor for immunocompromise was recorded in 18% of the 3702 patients enrolled. The prevalences of risk factors significantly differed across continents and countries, with chronic steroid use (45%), hematological cancer (25%), and chemotherapy (22%) the most common. Among immunocompromised patients, community-acquired pneumonia (CAP) pathogens were the most frequently identified, and prevalences did not differ from those in immunocompetent patients. Risk factors for immunocompromise were independently associated with neither Pseudomonas aeruginosa nor non\u2013community-acquired bacteria. Specific risk factors were independently associated with fungal infections (odds ratio for AIDS and hematological cancer, 15.10 and 4.65, respectively; both P = .001), mycobacterial infections (AIDS; P = .006), and viral infections other than influenza (hematological cancer, 5.49; P < .001). Conclusions. Our findings could be considered by clinicians in prescribing empiric antibiotic therapy for CAP in immunocompromised patients. Patients with AIDS and hematological cancer admitted with CAP may have higher prevalences of fungi, mycobacteria, and noninfluenza viruses

    Burden and risk factors for Pseudomonas aeruginosa community-acquired pneumonia:a Multinational Point Prevalence Study of Hospitalised Patients

    Get PDF
    Pseudornonas aeruginosa is a challenging bacterium to treat due to its intrinsic resistance to the antibiotics used most frequently in patients with community-acquired pneumonia (CAP). Data about the global burden and risk factors associated with P. aeruginosa-CAP are limited. We assessed the multinational burden and specific risk factors associated with P. aeruginosa-CAP. We enrolled 3193 patients in 54 countries with confirmed diagnosis of CAP who underwent microbiological testing at admission. Prevalence was calculated according to the identification of P. aeruginosa. Logistic regression analysis was used to identify risk factors for antibiotic-susceptible and antibiotic-resistant P. aeruginosa-CAP. The prevalence of P. aeruginosa and antibiotic-resistant P. aeruginosa-CAP was 4.2% and 2.0%, respectively. The rate of P. aeruginosa CAP in patients with prior infection/colonisation due to P. aeruginosa and at least one of the three independently associated chronic lung diseases (i.e. tracheostomy, bronchiectasis and/or very severe chronic obstructive pulmonary disease) was 67%. In contrast, the rate of P. aeruginosa-CAP was 2% in patients without prior P. aeruginosa infection/colonisation and none of the selected chronic lung diseases. The multinational prevalence of P. aeruginosa-CAP is low. The risk factors identified in this study may guide healthcare professionals in deciding empirical antibiotic coverage for CAP patients

    Burden of disease scenarios for 204 countries and territories, 2022–2050: a forecasting analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Future trends in disease burden and drivers of health are of great interest to policy makers and the public at large. This information can be used for policy and long-term health investment, planning, and prioritisation. We have expanded and improved upon previous forecasts produced as part of the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) and provide a reference forecast (the most likely future), and alternative scenarios assessing disease burden trajectories if selected sets of risk factors were eliminated from current levels by 2050. Methods: Using forecasts of major drivers of health such as the Socio-demographic Index (SDI; a composite measure of lag-distributed income per capita, mean years of education, and total fertility under 25 years of age) and the full set of risk factor exposures captured by GBD, we provide cause-specific forecasts of mortality, years of life lost (YLLs), years lived with disability (YLDs), and disability-adjusted life-years (DALYs) by age and sex from 2022 to 2050 for 204 countries and territories, 21 GBD regions, seven super-regions, and the world. All analyses were done at the cause-specific level so that only risk factors deemed causal by the GBD comparative risk assessment influenced future trajectories of mortality for each disease. Cause-specific mortality was modelled using mixed-effects models with SDI and time as the main covariates, and the combined impact of causal risk factors as an offset in the model. At the all-cause mortality level, we captured unexplained variation by modelling residuals with an autoregressive integrated moving average model with drift attenuation. These all-cause forecasts constrained the cause-specific forecasts at successively deeper levels of the GBD cause hierarchy using cascading mortality models, thus ensuring a robust estimate of cause-specific mortality. For non-fatal measures (eg, low back pain), incidence and prevalence were forecasted from mixed-effects models with SDI as the main covariate, and YLDs were computed from the resulting prevalence forecasts and average disability weights from GBD. Alternative future scenarios were constructed by replacing appropriate reference trajectories for risk factors with hypothetical trajectories of gradual elimination of risk factor exposure from current levels to 2050. The scenarios were constructed from various sets of risk factors: environmental risks (Safer Environment scenario), risks associated with communicable, maternal, neonatal, and nutritional diseases (CMNNs; Improved Childhood Nutrition and Vaccination scenario), risks associated with major non-communicable diseases (NCDs; Improved Behavioural and Metabolic Risks scenario), and the combined effects of these three scenarios. Using the Shared Socioeconomic Pathways climate scenarios SSP2-4.5 as reference and SSP1-1.9 as an optimistic alternative in the Safer Environment scenario, we accounted for climate change impact on health by using the most recent Intergovernmental Panel on Climate Change temperature forecasts and published trajectories of ambient air pollution for the same two scenarios. Life expectancy and healthy life expectancy were computed using standard methods. The forecasting framework includes computing the age-sex-specific future population for each location and separately for each scenario. 95% uncertainty intervals (UIs) for each individual future estimate were derived from the 2·5th and 97·5th percentiles of distributions generated from propagating 500 draws through the multistage computational pipeline. Findings: In the reference scenario forecast, global and super-regional life expectancy increased from 2022 to 2050, but improvement was at a slower pace than in the three decades preceding the COVID-19 pandemic (beginning in 2020). Gains in future life expectancy were forecasted to be greatest in super-regions with comparatively low life expectancies (such as sub-Saharan Africa) compared with super-regions with higher life expectancies (such as the high-income super-region), leading to a trend towards convergence in life expectancy across locations between now and 2050. At the super-region level, forecasted healthy life expectancy patterns were similar to those of life expectancies. Forecasts for the reference scenario found that health will improve in the coming decades, with all-cause age-standardised DALY rates decreasing in every GBD super-region. The total DALY burden measured in counts, however, will increase in every super-region, largely a function of population ageing and growth. We also forecasted that both DALY counts and age-standardised DALY rates will continue to shift from CMNNs to NCDs, with the most pronounced shifts occurring in sub-Saharan Africa (60·1% [95% UI 56·8–63·1] of DALYs were from CMNNs in 2022 compared with 35·8% [31·0–45·0] in 2050) and south Asia (31·7% [29·2–34·1] to 15·5% [13·7–17·5]). This shift is reflected in the leading global causes of DALYs, with the top four causes in 2050 being ischaemic heart disease, stroke, diabetes, and chronic obstructive pulmonary disease, compared with 2022, with ischaemic heart disease, neonatal disorders, stroke, and lower respiratory infections at the top. The global proportion of DALYs due to YLDs likewise increased from 33·8% (27·4–40·3) to 41·1% (33·9–48·1) from 2022 to 2050, demonstrating an important shift in overall disease burden towards morbidity and away from premature death. The largest shift of this kind was forecasted for sub-Saharan Africa, from 20·1% (15·6–25·3) of DALYs due to YLDs in 2022 to 35·6% (26·5–43·0) in 2050. In the assessment of alternative future scenarios, the combined effects of the scenarios (Safer Environment, Improved Childhood Nutrition and Vaccination, and Improved Behavioural and Metabolic Risks scenarios) demonstrated an important decrease in the global burden of DALYs in 2050 of 15·4% (13·5–17·5) compared with the reference scenario, with decreases across super-regions ranging from 10·4% (9·7–11·3) in the high-income super-region to 23·9% (20·7–27·3) in north Africa and the Middle East. The Safer Environment scenario had its largest decrease in sub-Saharan Africa (5·2% [3·5–6·8]), the Improved Behavioural and Metabolic Risks scenario in north Africa and the Middle East (23·2% [20·2–26·5]), and the Improved Nutrition and Vaccination scenario in sub-Saharan Africa (2·0% [–0·6 to 3·6]). Interpretation: Globally, life expectancy and age-standardised disease burden were forecasted to improve between 2022 and 2050, with the majority of the burden continuing to shift from CMNNs to NCDs. That said, continued progress on reducing the CMNN disease burden will be dependent on maintaining investment in and policy emphasis on CMNN disease prevention and treatment. Mostly due to growth and ageing of populations, the number of deaths and DALYs due to all causes combined will generally increase. By constructing alternative future scenarios wherein certain risk exposures are eliminated by 2050, we have shown that opportunities exist to substantially improve health outcomes in the future through concerted efforts to prevent exposure to well established risk factors and to expand access to key health interventions

    Global age-sex-specific mortality, life expectancy, and population estimates in 204 countries and territories and 811 subnational locations, 1950–2021, and the impact of the COVID-19 pandemic: a comprehensive demographic analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Estimates of demographic metrics are crucial to assess levels and trends of population health outcomes. The profound impact of the COVID-19 pandemic on populations worldwide has underscored the need for timely estimates to understand this unprecedented event within the context of long-term population health trends. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 provides new demographic estimates for 204 countries and territories and 811 additional subnational locations from 1950 to 2021, with a particular emphasis on changes in mortality and life expectancy that occurred during the 2020–21 COVID-19 pandemic period. Methods: 22 223 data sources from vital registration, sample registration, surveys, censuses, and other sources were used to estimate mortality, with a subset of these sources used exclusively to estimate excess mortality due to the COVID-19 pandemic. 2026 data sources were used for population estimation. Additional sources were used to estimate migration; the effects of the HIV epidemic; and demographic discontinuities due to conflicts, famines, natural disasters, and pandemics, which are used as inputs for estimating mortality and population. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate under-5 mortality rates, which synthesised 30 763 location-years of vital registration and sample registration data, 1365 surveys and censuses, and 80 other sources. ST-GPR was also used to estimate adult mortality (between ages 15 and 59 years) based on information from 31 642 location-years of vital registration and sample registration data, 355 surveys and censuses, and 24 other sources. Estimates of child and adult mortality rates were then used to generate life tables with a relational model life table system. For countries with large HIV epidemics, life tables were adjusted using independent estimates of HIV-specific mortality generated via an epidemiological analysis of HIV prevalence surveys, antenatal clinic serosurveillance, and other data sources. Excess mortality due to the COVID-19 pandemic in 2020 and 2021 was determined by subtracting observed all-cause mortality (adjusted for late registration and mortality anomalies) from the mortality expected in the absence of the pandemic. Expected mortality was calculated based on historical trends using an ensemble of models. In location-years where all-cause mortality data were unavailable, we estimated excess mortality rates using a regression model with covariates pertaining to the pandemic. Population size was computed using a Bayesian hierarchical cohort component model. Life expectancy was calculated using age-specific mortality rates and standard demographic methods. Uncertainty intervals (UIs) were calculated for every metric using the 25th and 975th ordered values from a 1000-draw posterior distribution. Findings: Global all-cause mortality followed two distinct patterns over the study period: age-standardised mortality rates declined between 1950 and 2019 (a 62·8% [95% UI 60·5–65·1] decline), and increased during the COVID-19 pandemic period (2020–21; 5·1% [0·9–9·6] increase). In contrast with the overall reverse in mortality trends during the pandemic period, child mortality continued to decline, with 4·66 million (3·98–5·50) global deaths in children younger than 5 years in 2021 compared with 5·21 million (4·50–6·01) in 2019. An estimated 131 million (126–137) people died globally from all causes in 2020 and 2021 combined, of which 15·9 million (14·7–17·2) were due to the COVID-19 pandemic (measured by excess mortality, which includes deaths directly due to SARS-CoV-2 infection and those indirectly due to other social, economic, or behavioural changes associated with the pandemic). Excess mortality rates exceeded 150 deaths per 100 000 population during at least one year of the pandemic in 80 countries and territories, whereas 20 nations had a negative excess mortality rate in 2020 or 2021, indicating that all-cause mortality in these countries was lower during the pandemic than expected based on historical trends. Between 1950 and 2021, global life expectancy at birth increased by 22·7 years (20·8–24·8), from 49·0 years (46·7–51·3) to 71·7 years (70·9–72·5). Global life expectancy at birth declined by 1·6 years (1·0–2·2) between 2019 and 2021, reversing historical trends. An increase in life expectancy was only observed in 32 (15·7%) of 204 countries and territories between 2019 and 2021. The global population reached 7·89 billion (7·67–8·13) people in 2021, by which time 56 of 204 countries and territories had peaked and subsequently populations have declined. The largest proportion of population growth between 2020 and 2021 was in sub-Saharan Africa (39·5% [28·4–52·7]) and south Asia (26·3% [9·0–44·7]). From 2000 to 2021, the ratio of the population aged 65 years and older to the population aged younger than 15 years increased in 188 (92·2%) of 204 nations. Interpretation: Global adult mortality rates markedly increased during the COVID-19 pandemic in 2020 and 2021, reversing past decreasing trends, while child mortality rates continued to decline, albeit more slowly than in earlier years. Although COVID-19 had a substantial impact on many demographic indicators during the first 2 years of the pandemic, overall global health progress over the 72 years evaluated has been profound, with considerable improvements in mortality and life expectancy. Additionally, we observed a deceleration of global population growth since 2017, despite steady or increasing growth in lower-income countries, combined with a continued global shift of population age structures towards older ages. These demographic changes will likely present future challenges to health systems, economies, and societies. The comprehensive demographic estimates reported here will enable researchers, policy makers, health practitioners, and other key stakeholders to better understand and address the profound changes that have occurred in the global health landscape following the first 2 years of the COVID-19 pandemic, and longer-term trends beyond the pandemic
    corecore