75 research outputs found

    Zero Dimensional Polariton Laser in a Sub-Wavelength Grating Based Vertical Microcavity

    Get PDF
    Semiconductor exciton-polaritons in planar microcavities form coherent two-dimensional condensates in non-equilibrium. However, coupling of multiple lower-dimensional polariton quantum systems, critically needed for polaritonic quantum device applications and novel cavity-lattice physics, has been limited due to the conventional cavity structures. Here we demonstrate full confinement of the polaritons non-destructively using a hybrid cavity made of a single-layer sub-wavelength grating mirror and a distributed Bragg reflector. Single-mode polariton lasing was observed at a chosen polarization. Incorporation of a designable slab mirror into the conventional vertical cavity, when operating in the strong-coupling regime, enables confinement, control and coupling of polariton gasses in a scalable fashion. It may open a door to experimental implementation of polariton-based quantum photonic devices and coupled cavity quantum electrodynamics systems.Comment: http://www.nature.com/lsa/journal/v3/n1/full/lsa201416a.htm

    Algebraic order and the Berezinskii-Kosterlitz-Thouless transition in an exciton-polariton gas

    Get PDF
    We observe quasi-long range coherence in a two-dimensional condensate of exciton-polaritons. Our measurements are the first to confirm that the spatial correlation algebraically decays with a slow power-law, whose exponent quantitatively behaves as predicted by the Berezinskii-Kosterlitz-Thouless theory. The exciton-polaritons are created by non-resonant optical pumping of a micro-cavity sample with embedded GaAs quantum-wells at liquid helium temperature. Michelson interference is used to measure the coherence of the photons emitted by decaying exciton-polaritons

    Single photon emission of a charge-tunable GaAs/Al0.25Ga0.75As droplet quantum dot device

    Get PDF
    This work was financially supported by the Bundesministerium fűr Bildung und Forschung (BMBF) within the Project “QuaHL-Rep” under Contract No. (FKZ) 01BQ1042.In this work, we report the fabrication of a charge-tunable GaAs/Al0.25Ga0.75As quantum dot (QD) device containing QDs deposited by modified droplet epitaxy producing almost strain and composition gradient free QDs. We obtained a QD density in the low 109 cm-2 range that enables us to perform spectroscopy on single droplet QDs showing linewidths as narrow as 40 μeV. The integration of the QDs into a Schottky diode allows us to controllably charge a single QD with up to four electrons, while non-classical photoluminescence is proven by photon auto-correlation measurements showing photon-antibunching (g(2)(0) = 0.05).Publisher PDFPeer reviewe

    Sensitivity of resonant tunneling diode photodetectors

    Get PDF
    The authors are grateful for financial support by the BMBF via national project EIPHRIK (FKZ: 13N10710) and the European Union (FPVII (2007-2013) under Grant Agreement No. 318287 LANDAUER).We have studied the sensitivity of AlGaAs/GaAs double barrier resonant tunneling diode photodetectors with an integrated GaInNAs absorption layer for light sensing at the telecommunication wavelength of λ=1.3 µm for illumination powers from pico to micro Watts. The sensitivity decreases nonlinearly with power. An illumination power increase of seven orders of magnitude leads to a reduction of the photocurrent sensitivity from SI =5.82 × 103 A/W to 3.2 A/W. We attribute the nonlinear sensitivity-power dependence to an altered local electrostatic potential due to hole-accumulation that on the one hand tunes the tunneling current, but on the other hand affects the lifetime of photogenerated holes. In particular, the lifetime decreases exponentially with increasing hole-population. The lifetime reduction results from an enhanced electrical field, a rise of the quasi-Fermi level and an increased energy splitting within the triangular potential well. The non-constant sensitivity is a direct result of the non-constant lifetime. Based on these findings, we provide an expression that allows to calculate the sensitivity as a function of illumination power and bias voltage, show a way to model the time-resolved photocurrent, and determine the critical power up to which the resonant tunneling diode photosensor sensitivity can be assumed constant.PostprintPeer reviewe

    Quantum State Transfer from a Single Photon to a Distant Quantum-Dot Electron Spin

    Full text link
    Quantum state transfer from flying photons to stationary matter qubits is an important element in the realization of quantum networks. Self-assembled semiconductor quantum dots provide a promising solid-state platform hosting both single photon and spin, with an inherent light-matter interface. Here, we develop a method to coherently and actively control the single-photon frequency bins in superposition using electro-optic modulators, and measure the spin-photon entanglement with a fidelity of 0.796±0.0200.796\pm0.020. Further, by Greenberger-Horne-Zeilinger-type state projection on the frequency, path and polarization degrees of freedom of a single photon, we demonstrate quantum state transfer from a single photon to a single electron spin confined in an InGaAs quantum dot, separated by 5 meters. The quantum state mapping from the photon's polarization to the electron's spin is demonstrated along three different axis on the Bloch sphere, with an average fidelity of 78.5%78.5\%.Comment: Experiment finished in 2013, presented in QD2014 Pisa, under review in Phys. Rev. Let

    Efficient stray-light suppression for resonance fluorescence in quantum dot-micropillars using self-aligned metal apertures

    Get PDF
    Within this work we propose and demonstrate a technological approach to efficiently suppress excitation laser stray-light in resonance fluorescence experiments on quantum dot-micropillars. To ensure efficient stray-light suppression, their fabrication process includes a planarization step and the subsequent covering with a titanium mask to fabricate self-aligned apertures at the micropillar positions. These apertures aim at limiting laser straylight in side-excitation vertical-detection configuration, while enabling detection of the optical signal through the top facet of the micropillars. Beneficial effects of these apertures are proven and quantitatively evaluated within a statistical study in which we determine and compare the stray-light suppression of 48 micropillars with and without metal apertures. Actual resonance fluorescence experiments on single quantum dots coupled to the cavity mode prove the relevance of the proposed approach and demonstrate that it will foster further studies on cavity quantum electrodynamics phenomena under coherent optical excitation.PostprintPeer reviewe

    Photon-statistics excitation spectroscopy of a single two-level system

    Get PDF
    The research leading to these results has received funding from from the European Research Council (ERC) under the European Union’s Seventh Framework ERC Grant Agreement No. 615613 and from the German Research Foundation via Project No. RE2974/5-1.We investigate the influence of the photon statistics on the excitation dynamics of a single two level system. A single semiconductor quantum dot represents the two level system and is resonantly excited either with coherent laser light, or excited with chaotic light, with photon statistics corresponding to that of thermal radiation. Experimentally, we observe a reduced absorption cross section under chaotic excitation in the steady-state. In the transient regime, the Rabi oscillations observable under coherent excitation disappear under chaotic excitation. Likewise, in the emission spectrum the well-known Mollow triplet, which we observe under coherent drive, disappears under chaotic excitation. Our observations are fully consistent with theoretical predictions based on the semi-classical Bloch equation approach.PostprintPeer reviewe

    Nuclear Feedback in a Single Electron-Charged Quantum Dot under Pulsed Optical Control

    Full text link
    Electron spins in quantum dots under coherent control exhibit a number of novel feedback processes. Here, we present experimental and theoretical evidence of a feedback process between nuclear spins and a single electron spin in a single charged InAs quantum dot, controlled by the coherently modified probability of exciting a trion state. We present a mathematical model describing competition between optical nuclear pumping and nuclear spin-diffusion inside the quantum dot. The model correctly postdicts the observation of a hysteretic sawtooth pattern in the free-induction-decay of the single electron spin, hysteresis while scanning a narrowband laser through the quantum dot's optical resonance frequency, and non-sinusoidal fringes in the spin echo. Both the coherent electron-spin rotations, implemented with off-resonant ultrafast laser pulses, and the resonant narrow-band optical pumping for spin initialization interspersed between ultrafast pulses, play a role in the observed behavior. This effect allows dynamic tuning of the electron Larmor frequency to a value determined by the pulse timing, potentially allowing more complex coherent control operations.Comment: 15 pages, 7 figures. Corrected and expanded discussion. Now includes analysis of spin-echo and optical pumping experiments, in addition to FI

    Social comparison processes in organizations

    Get PDF
    We systematically analyze the role of social comparison processes in organizations. Specifically, we describe how social comparison processes have been used to explain six key areas of organizational inquiry: (1) organizational justice, (2) performance appraisal, (3) virtual work environments, (4) affective behavior in the workplace, (5) stress, and (6) leadership. Additionally, we describe how unique contextual factors in organizations offer new insight into two widely studied sub-processes of social comparison, acquiring social information and thinking about that information. Our analyses underscore the merit of integrating organizational phenomena and social comparison processes in future research and theory
    corecore