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Zero-dimensional polariton laser in a subwavelength
grating-based vertical microcavity

Bo Zhang1, Zhaorong Wang1, Sebastian Brodbeck2, Christian Schneider2, Martin Kamp2, Sven Höfling2,3

and Hui Deng1

Semiconductor exciton–polaritons in planar microcavities form coherent two-dimensional condensates in non-equilibrium. However,

the coupling of multiple lower-dimensional polariton quantum systems, which are critical for polaritonic quantum device applications

and novel cavity-lattice physics, has been limited in conventional cavity structures. Here, we demonstrate full non-destructive

confinement of polaritons using a hybrid cavity composed of a single-layer subwavelength grating mirror and a distributed Bragg

reflector. Single-mode polariton lasing was observed at a chosen polarization. The incorporation of a designable slab mirror in a

conventional vertical cavity, when operating in the strong-coupling regime, enables the confinement, control and coupling of

polariton gasses in a scalable fashion. This approach may open the door to experimental implementations of polariton-based

quantum photonic devices and coupled cavity quantum electrodynamic systems.
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INTRODUCTION

Semiconductor microcavity exciton–polaritons1 have recently

emerged as a unique, open system for studying non-equilibrium

quantum order.2–4 Exciton–polaritons are formed via strong coupling

between excitons and photons. Due to the excitonic component, the

polaritons are massive, weakly interacting quasiparticles that feature

strong nonlinearity and rich many-body physics.5 By mixing with the

photon, polaritons have an effective mass that is 1028 of the hydrogen

atomic mass, and they are relatively insensitive to disorder or local-

ization potentials in the active media. Hence, polaritons exhibit

quantum coherence over macroscopic scales with high critical tem-

peratures. Polaritons in quantum-well microcavities couple out of the

cavity at a fixed rate while conserving the energy and in-plane wave-

number, providing direct experimental access that is unavailable in

typical many-body quantum systems. Hallmarks of non-equilibrium

condensation and superfluidity have been widely observed in isolated

two-dimensional (2D) polariton systems (Ref. 3 and the references

therein).

Foundational work on 2D polariton systems has inspired theor-

etical schemes for polariton-based quantum circuits,6–8 quantum light

sources9–12 and novel quantum phases.4 Experimental implementa-

tion of these schemes requires the control, confinement and coupling

of polariton systems, which remain challenging in conventional

microcavity structures. Important features of a versatile experimental

platform based on polaritons include: first, well-defined zero-dimen-

sional (0D) polaritons as building blocks of a coupled system; second,

the establishment (i.e., survival) of a non-equilibrium quantum phase

in each 0D polariton cell, typically manifested as polariton lasing;

third, controllable coupling among the 0D cells; fourth, individual

addressability and control of each cell.

In conventional polariton cavities, the thick mirrors, consisting of

distributed Bragg reflectors (DBRs), make it difficult for the polaritons

to be confined or controlled beyond the perturbative regime. Most

existing methods for controlling polaritons lead to a weak modulation

potential that modifies the system’s properties without reducing its

dimensionality from 2D to 0D. Examples include weak confinement of

excitons via mechanical strain13 and periodic modulation of the

optical modes via surface patterning.14,15 Advanced techniques have

been developed to embed apertures inside the cavity,16,17 which have

led to 0D polariton cells, but polariton lasing has not been reported

thus far. Alternatively, 0D polariton systems have also been produced

via direct etching of the vertical cavity into pillars.18–21

Using this method, two groups have recently achieved polariton lasing

in pillars,22–24 thus satisfying the first two requirements. However, this

approach requires destructive plasma etching throughout the 4- to 6-

mm-tall cavity structure as well as the active media layers, which preludes

coupling between separate pillars. It is also unclear whether further

control of the polariton modes in each pillar would be possible.

In this work, we demonstrate a polariton system in an unconventional

cavity that can fulfill all four requirements. The new cavity structure

replaces the top DBR with a slab of photonic crystal (PC) (Figure 1),

which enables confinement and control of the polariton modes by
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design.25–27 At the same time, there is no destructive interface in the

active media layers or the main cavity layers; hence, coupling among

multiple low-dimensional polariton cells is unhindered. Using this cavity

system, we demonstrate 0D polariton lasing at a chosen polarization.

MATERIALS AND METHODS

A schematic of our hybrid cavity polariton device is shown in

Figure 1a. To fabricate the device, we first grew the planar structure

by molecular beam epitaxy on a GaAs substrate, consisting of 30

pairs of bottom DBR, an AlAs l/2 cavity layer, 2.5 pairs of top DBR

consisting of Al0.15GaAs/AlAs, and an Al0.85GaAs sacrificial layer

followed by an Al0.15GaAs top layer. There are 12 GaAs quantum

wells distributed in the three central antinodes of the cavity. We

created square gratings of 5–8 mm in length (Figure 1b) on the top

layer via electron-beam lithography followed by a short plasma

etching step. Hydrochloric acid chemical etching was then applied

to remove the sacrificial layer, followed by critical point drying.

The fabricated gratings are approximately 80 nm thick, with a

period of approximately 520 nm and a duty cycle of approximately

40%, and are suspended over an air gap of approximately 300 nm.

The gratings are optimized as a high-reflectance mirror for light

polarized along the grating bar direction (transverse electric (TE)-

polarization). Figure 1b shows a scanning electron microscopy

image of the top view of one of the devices.

Optical measurements were performed to characterize the pro-

perties of the cavity system. For consistency, all data shown were taken

on a device of 7.5 mm 3 7.5 mm in size. The sample was kept at 10–90 K

in a continuous flow liquid-helium cryostat. A pulsed Ti:sapphire laser
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Figure 1 Examples of the hybrid cavity. (a) A schematic of a 0D hybrid cavity with a SWG mirror. (b) Top-view SEM image of a fabricated 0D cavity with a SWG of

5 mm35 mm in size. 0D, zero-dimensional; SEM, scanning electron microscopy; SWG, subwavelength grating.
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Figure 2 Spectral properties of a 0D polariton device. (a) Spectrally resolved momentum space image of the PL from a 0D cavity, which shows discrete LP modes and

an UP mode. To clearly show the UP mode, the intensity of the upper panel is magnified by 403 compared to the lower panel. The straight red line at 1.551 eV

corresponds to the independently measured exciton energy. The other solid lines are the calculated dispersions of the LP, UP and uncoupled cavity. The white dashed

lines and the crosses (X) mark the position of the calculated discrete LP and cavity energies, respectively. (b) Spectrally resolved momentum space images of the

exciton PL, measured from the unprocessed part next to the SWG–DBR cavity. (c) Spectrally resolved real space image of the PL from the 0D cavity, showing the spatial

profile of the discrete LP modes. (d–e) Reflectance spectra of the 0D cavity measured from (d) the normal direction and (e) 3.56from the normal direction, both with an

angular resolution of 0.276. (f) Temperature dependence of the LP (stars), exciton (squares) and cavity resonances (circles). 0D, zero-dimensional; DBR, distributed

Bragg reflector; LP, lower polariton; PL, photoluminescence; SWG, subwavelength grating; UP, upper polariton.
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at 740 nm was used as the excitation laser, with an 80-MHz repetition

rate and a 100-fs pulse duration. The laser was focused to a spot size of

approximately 2 mm in diameter on the device from the normal di-

rection using an objective lens with a numerical aperture of 0.55. The

photoluminescence signal was collected with the same objective lens,

followed by real space or Fourier space imaging optics, and then sent to

a 0.5-m spectrometer with an attached nitrogen-cooled charge-

coupled device. The spectrally resolved real space and Fourier space

distributions were measured by selecting a strip across the center of the

Fourier space and real space distributions using the spectrometer’s

entrance slit. The resolution of the measurements was limited by the

charge-coupled device pixel size to 0.3 m21 for Fourier space imaging

and by the diffraction limit to 0.4 mm for real space imaging.

RESULTS AND DISCUSSION

Strong coupling between the excitons and TE cavity modes was evident in

the momentum space images of the emission from within the cavity, as

shown in Figure 2a. Discrete lower polariton (LP) modes and a faint

upper polariton (UP) branch were observed below and above the exciton

energy, respectively, with dispersions distinct from that of the cavity

photon (the red solid line). In contrast, the emission from outside the

hybrid cavity region shows a flat, broad exciton band at the heavy hole

exciton energy of Eexc51.551 eV (Figure 2b). The energies of the polariton

modes can be described as follows in the rotating wave approximation:

EUP,LP kð Þ~

1=2 Eexc kð ÞzEcav kð Þ+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eexc kð Þ{Ecav kð Þð Þ2z4h�2V2

q� � ð1Þ

Here, k is the in-plane wavenumber, Ecav is the uncoupled cavity

energy and 2h�V is the exciton–photon coupling strength, corresponding

to LP–UP splitting at zero exciton–photon detuning. Using Equation (1)

and the measured Eexc(k50)51.551 eV, ELP(k50)51.543 eV and

EUP(k50)51.556 eV, we obtain Ecav(0)51.548 eV and 2h�V512 meV.

The discrete LP modes show full three-dimensional confinement of

the polaritons. The lateral size of the hybrid cavity is determined by the

size of the high-reflectance subwavelength grating (SWG). Outside the

SWG, there is no cavity resonance, and the excitons are eigen-excita-

tions. Inside the SWG region, the TE-polarized cavity modes strongly

couple to the excitons, leading to laterally confined TE-polarized

polariton modes. The transverse magnetic (TM)-polarized excitons

remain in the weak coupling regime. Because there is not a sharp

lateral boundary at which the cavity mode disappears, we phenomen-

ologically modeled the effective confinement potential as an infinite

harmonic potential. The calculated energies of the LP modes are indi-

cated by the dashed lines in Figure 2a, which agree very well with the

measured LP resonances. For comparison, the confined cavity modes

(crosses) and corresponding 2D dispersions of the LP, UP and cavity

modes are also shown (solid lines).

The spatial profiles of the confined LP modes were also measured

via spectrally resolved real space imaging, as shown in Figure 2c. The

four lowest LP modes are well confined within the SWG region, while

the higher excited states are spread outside and form a continuous

band. The variances of the k-space and x-space wavefunctions along

the detected direction are Dk50.85 mm and Dx51.01 mm. Their pro-

duct is Dx3Dk50.86, slightly larger than the uncertainty limit of 0.5,

which may be due to the diffusion of the LPs.

The absorption spectra of the modes were obtained via reflectance

measurements. The spectrum measured normal to the sample

(Figure 2d) shows the three symmetric modes with the lowest mean

in-plane wavenumber: the UP ground state, the LP ground state and

the second LP excited states. The spectral weights of the other polar-

iton states are too small to be measured in reflectance. When measured

at 3.56 from the sample normal, the first excited state of the LPs was

also observed (Figure 2e).

A further confirmation of the strong-coupling regime is the tem-

perature tuning of the resonances, as shown in Figure 2f. As the tem-

perature increased, the LP and UP ground state energies were

redshifted and were measured via k-space photoluminescence. The

exciton energy was directly measured in the planar region outside

the SWG. The shift of the cavity photon energy was obtained from

the shift of the first low-energy side minimum of the stopband.

Anticrossing of the LP and UP modes is evident. From the LP, exciton

and cavity energies, we obtain a coupling strength of 2h�V(T),10 meV

from 10 K to 80 K, showing that strong coupling persists to the liquid

nitrogen temperature and higher.

Unlike planar DBRs, the grating breaks the in-plane rotational

symmetry. As a result, the SWG mirrors can have high polarization

selectivity. We optimized our SWG to have high reflectance for the

TE mode and low reflectance for the orthogonal TM mode.

Correspondingly, the polaritons are TE-polarized, while the TM-

polarized excitons remain in the weak coupling regime. Figure 3 shows

the photoluminescence intensity vs. the angle of linear polarization for

the LPs and excitons at k,0 within the SWG region, normalized by the

maximum intensity. We fit the data with I5Acos (h2w)21B, where

the fitting parameter w depends on the orientation of the device, A

corresponds to linearly polarized light, and B corresponds to a non-

polarized background. Correspondingly, the degree of linear polariza-

tion is DOP5(Imax2Imin)/(Imax1Imin)5A/(A12B). We obtained

ALP51.0460.04, BLP50.0560.01, LP5716616 and DOP591.9%

for the LPs, confirming that the LPs are highly TE-polarized. For the

excitons, we obtained Aexc50.89160.001, Bexc50.008160.0002,

exc516166165 LP1906and DOP598.2%, showing that the excitons

are polarized orthogonal to the LPs. Such control of the polariton

polarization has not been possible with conventional DBR–DBR cav-

ities and is unique to the SWG-based cavity.

Finally, we show that polariton lasing was achieved in the 0D hybrid

cavity. As shown in Figure 4a, the emission intensity I from the LP ground

state increases sharply with the excitation power P at a threshold of

Pth5,5 kW cm22, characteristic of the onset of lasing. Interestingly,

the emission intensity I varies with P quadratically both below and well

above the threshold, except at very low excitation densities. This result may

arise because the energy separation between the discrete modes is larger
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Figure 3 Polarizations of the polaritons and excitons in the hybrid-cavity polariton

system. (a) Polar plots of the LP ground state intensity as a function of the angle of

the linear polarization analyzer. The symbols represent the data. The solid lines fit

to Equation (3), with a corresponding fitted linear degree of polarization of 91.9%.

(b) Polar plot for the exciton emission intensity from within the SWG, corresponding

to a fitted linear degree of polarization of 98.2%, with orthogonal polarization

compared to (a). LP, lower polariton; SWG, subwavelength grating.
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than kBT ,0.8 meV. As a result, relaxation to the ground state through LP-

phonon scattering is suppressed compared to LP–LP scattering.

Accompanying the transition, a sharp decrease in the LP ground

state linewidth was measured. The minimum linewidth of 0.24 meV

may be primarily limited by the intensity fluctuation of the pulsed

excitation laser.28 The LP energy increased continuously with the

excitation density due to exciton–exciton interactions. The blueshift

shows a linear dependence below the threshold, is suppressed near the

threshold, and shows a logarithmic dependence above the thresh-

old.22,29 The discrete energy levels are maintained across the threshold

and remain distinct below the uncoupled cavity energy.

The establishment of polariton lasing confirms the quality of the 0D

polariton system. The threshold density is smaller than or comparable

to those measured in DBR–DBR pillar cavities.22,23 The linewidth

reduction and blueshift are all within an order of magnitude of

reported values in DBR–DBR planar or pillar microcavities.1,22,23

Unlike DBR–DBR cavities, however, the polariton lasing demonstrated

herein occurs with a priori defined polarization, independent of the

excitation conditions.

CONCLUSIONS

In conclusion, we have demonstrated the first hybrid cavity incor-

porating a slab PC mirror, operating in the strong coupling regime

and supporting polariton lasing. Three-dimensional confinement of

the polaritons was achieved by using a finite size SWG, with the

quantum wells and the main cavity layers untouched. Polariton lasing

in the ground state was readily observed.

Unique to the hybrid SWG cavity, the LP is linearly polarized, while

the orthogonally polarized exciton mode remains in the weak-coup-

ling regime. The PL of the weakly coupled TM excitons provides direct

access to the TE exciton reservoir, which has not been available in

conventional III-As cavities. This approach can enable polarized

polariton lasers30–34 and can simplify quantum photonic devices based

on single-spin polaritons.10–12,35

The integration of a slab PC mirror in a polariton system adds

flexibility in controlling the fundamental properties of polaritons by

design, including the dimensionality and polarization, as demonstrated

in this work. The investigation of different PC designs will allow for

further modifications of the polariton properties. Importantly, control

of the polariton system was achieved without creating destructive

interfaces in the active media or main cavity layer. Hence, extension

of this single 0D polariton system to multiple close-placed systems

would allow for the creation of controllably coupled polariton systems,

while each 0D cell in the coupled system could be separately controlled

and probed. The demonstrated hybrid-cavity polariton system may

provide a scalable architecture for the experimental implementation

of coupled lattice cavity systems.4,36
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