65 research outputs found

    Low prevalence of hepatitis C co-infection in recently HIV-infected minority men who have sex with men in Los Angeles: a cross-sectional study.

    Get PDF
    BackgroundGeographic and sociodemographic characterization of hepatitis C virus (HCV) transmission amongst men who have sex with men (MSM) has been limited. Our aim was to characterize HCV prevalence, risk factors for HCV co-infection, and patterns of HIV and HCV co-transmission and transmitted drug resistance mutations (DRMs) in newly HIV-diagnosed Los Angeles MSM.MethodsViral RNA was extracted from stored plasma samples from a Los Angeles cohort of newly diagnosed HIV-infected MSM with well-characterized substance use and sexual behavioral characteristics via computer-assisted self-interviewing surveys. Samples were screened for HCV by qPCR. HCV E1, E2, core, NS3 protease and NS5B polymerase and HIV-1 protease and reverse transcriptase regions were amplified and sequenced. Phylogenetic analysis was used to determine relatedness of HCV and HIV-1 isolates within the cohort and viral sequences were examined for DRMs.ResultsOf 185 newly HIV-diagnosed MSM, the majority (65%) were of minority race/ethnicity and recently infected (57.8%), with median age of 28.3 years. A minority (6.6%) reported injection drug use (IDU), whereas 96 (52.8%) reported recent substance use, primarily cannabis or stimulant use. High risk sexual behaviors included 132 (74.6%) with unprotected receptive anal intercourse, 60 (33.3%) with group sex, and 10 (5.7%) with fisting. Forty-five (24.3%) had acute gonorrhea or chlamydia infection. Only 3 (1.6%) subjects had detectable HCV RNA. Amongst these subjects, HIV and HCV isolates were unrelated by phylogenetic analysis and none possessed clinically relevant NS3 or NS5B HCV DRMs.ConclusionsPrevalence of HCV co-infection was low and there was no evidence of HIV-HCV co-transmission in this cohort of relatively young, predominantly minority, newly HIV-diagnosed MSM, most with early HIV infection, with high rates of high risk sexual behaviors, STI, and non-IDU. The low HCV prevalence in a group with high-risk behaviors for non-IDU HCV acquisition suggests an opportune time for targeted HCV prevention measures

    The ACS Nearby Galaxy Survey Treasury IX. Constraining asymptotic giant branch evolution with old metal-poor galaxies

    Get PDF
    In an attempt to constrain evolutionary models of the asymptotic giant branch (AGB) phase at the limit of low masses and low metallicities, we have examined the luminosity functions and number ratio between AGB and red giant branch (RGB) stars from a sample of resolved galaxies from the ACS Nearby Galaxy Survey Treasury (ANGST). This database provides HST optical photometry together with maps of completeness, photometric errors, and star formation histories for dozens of galaxies within 4 Mpc. We select 12 galaxies characterized by predominantly metal-poor populations as indicated by a very steep and blue RGB, and which do not present any indication of recent star formation in their color--magnitude diagrams. Thousands of AGB stars brighter than the tip of the RGB (TRGB) are present in the sample (between 60 and 400 per galaxy), hence the Poisson noise has little impact in our measurements of the AGB/RGB ratio. We model the photometric data with a few sets of thermally pulsing AGB (TP-AGB) evolutionary models with different prescriptions for the mass loss. This technique allows us to set stringent constraints to the TP-AGB models of low-mass metal-poor stars (with M<1.5 Msun, [Fe/H]<~-1.0). Indeed, those which satisfactorily reproduce the observed AGB/RGB ratios have TP-AGB lifetimes between 1.2 and 1.8 Myr, and finish their nuclear burning lives with masses between 0.51 and 0.55 Msun. This is also in good agreement with recent observations of white dwarf masses in the M4 old globular cluster. These constraints can be added to those already derived from Magellanic Cloud star clusters as important mileposts in the arduous process of calibrating AGB evolutionary models.Comment: To appear in ApJ, a version with better resolution is in http://stev.oapd.inaf.it/~lgirardi/rgbagb.pd

    Dust Production and Mass Loss in the Galactic Globular Cluster NGC 362

    Full text link
    We investigate dust production and stellar mass loss in the Galactic globular cluster NGC 362. Due to its close proximity to the Small Magellanic Cloud (SMC), NGC 362 was imaged with the IRAC and MIPS cameras onboard the Spitzer Space Telescope as part of the Surveying the Agents of Galaxy Evolution (SAGE-SMC) Spitzer Legacy program. We detect several cluster members near the tip of the Red Giant Branch that exhibit infrared excesses indicative of circumstellar dust and find that dust is not present in measurable quantities in stars below the tip of the Red Giant Branch. We modeled the spectral energy distribution (SED) of the stars with the strongest IR excess and find a total cluster dust mass-loss rate of 3.0(+2.0/-1.2) x 10^-9 solar masses per year, corresponding to a gas mass-loss rate of 8.6(+5.6/-3.4) x 10^-6 solar masses per year, assuming [Fe/H] = -1.16. This mass loss is in addition to any dust-less mass loss that is certainly occurring within the cluster. The two most extreme stars, variables V2 and V16, contribute up to 45% of the total cluster dust-traced mass loss. The SEDs of the more moderate stars indicate the presence of silicate dust, as expected for low-mass, low-metallicity stars. Surprisingly, the SED shapes of the stars with the strongest mass-loss rates appear to require the presence of amorphous carbon dust, possibly in combination with silicate dust, despite their oxygen-rich nature. These results corroborate our previous findings in omega Centauri.Comment: 13 pages, 11 figures. Accepted to Ap

    A Population of Accreted SMC Stars in the LMC

    Full text link
    We present an analysis of the stellar kinematics of the Large Magellanic Cloud based on ~5900 new and existing velocities of massive red supergiants, oxygen-rich and carbon-rich AGB stars, and other giants. After correcting the line-of-sight velocities for the LMC's space motion and accounting for asymmetric drift in the AGB population, we derive a rotation curve that is consistent with all of the tracers used, as well as that of published HI data. The amplitude of the rotation curve is v_0=87+/-5 km s^-1 beyond a radius R_0=2.4+/-0.1 kpc, and has a position angle of the kinematic line of nodes of theta=142 degrees +/-5 degrees. By examining the outliers from our fits, we identify a population of 376 stars, or >~5% of our sample, that have line-of-sight velocities that apparently oppose the sense of rotation of the LMC disk. We find that these kinematically distinct stars are either counter-rotating in a plane closely aligned with the LMC disk, or rotating in the same sense as the LMC disk, but in a plane that is inclined by 54 degrees +/- 2 degrees to the LMC. Their kinematics clearly link them to two known HI arms, which have previously been interpreted as being pulled out from the LMC. We measure metallicities from the Ca triplet lines of ~1000 LMC field stars and 30 stars in the kinematically distinct population. For the LMC field, we find a median [Fe/H]=-0.56 +/- 0.02 with dispersion of 0.5 dex, while for the kinematically distinct stars the median [Fe/H] is -1.25 +/- 0.13 with a dispersion of 0.7 dex. The metallicity differences provide strong evidence that the kinematically distinct population originated in the SMC. This interpretation has the consequence that the HI arms kinematically associated with the stars are likely falling into the LMC, instead of being pulled out.Comment: 12 pages, 8 color figures, accepted for publication in the Astrophysical Journa

    A Spitzer Space Telescope Atlas of omega Centauri: The Stellar Population, Mass Loss, and the Intracluster Medium

    Full text link
    We present a Spitzer Space Telescope imaging survey of the most massive Galactic globular cluster, omega Centauri, and investigate stellar mass loss at low metallicity and the intracluster medium (ICM). The survey covers approximately 3.2x the cluster half-mass radius at 3.6, 4.5, 5.8, 8, and 24 microns, resulting in a catalog of over 40,000 point-sources in the cluster. Approximately 140 cluster members ranging 1.5 dex in metallicity show a red excess at 24 microns, indicative of circumstellar dust. If all of the dusty sources are experiencing mass loss, the cumulative rate of loss is estimated at 2.9 - 4.2 x 10^(-7) solar masses per year, 63% -- 66% of which is supplied by three asymptotic giant branch stars at the tip of the Red Giant Branch (RGB). There is little evidence for strong mass loss lower on the RGB. If this material had remained in the cluster center, its dust component (> 1 x 10^(-4) solar masses) would be detectable in our 24 and 70 micron images. While no dust cloud located at the center of omega Cen is apparent, we do see four regions of very faint, diffuse emission beyond two half-mass radii at 24 microns. It is unclear whether these dust clouds are foreground emission or are associated with omega Cen. In the latter case, these clouds may be the ICM in the process of escaping from the cluster.Comment: 20 pages, 18 figures, 8 tables, accepted for publication in A

    A Spitzer Space Telescope far-infrared spectral atlas of compact sources in the Magellanic Clouds. I. The Large Magellanic Cloud

    Full text link
    [abridged] We present 52-93 micron spectra obtained with Spitzer in the MIPS-SED mode, of a representative sample of luminous compact far-IR sources in the LMC. These include carbon stars, OH/IR AGB stars, post-AGB objects and PNe, RCrB-type star HV2671, OH/IR red supergiants WOHG064 and IRAS05280-6910, B[e] stars IRAS04530-6916, R66 and R126, Wolf-Rayet star Brey3a, Luminous Blue Variable R71, supernova remnant N49, a large number of young stellar objects, compact HII regions and molecular cores, and a background galaxy (z~0.175). We use the spectra to constrain the presence and temperature of cold dust and the excitation conditions and shocks within the neutral and ionized gas, in the circumstellar environments and interfaces with the surrounding ISM. Evolved stars, including LBV R71, lack cold dust except in some cases where we argue that this is swept-up ISM. This leads to an estimate of the duration of the prolific dust-producing phase ("superwind") of several thousand years for both RSGs and massive AGB stars, with a similar fractional mass loss experienced despite the different masses. We tentatively detect line emission from neutral oxygen in the extreme RSG WOHG064, with implications for the wind driving. In N49, the shock between the supernova ejecta and ISM is revealed by its strong [OI] 63-micron emission and possibly water vapour; we estimate that 0.2 Msun of ISM dust was swept up. Some of the compact HII regions display pronounced [OIII] 88-micron emission. The efficiency of photo-electric heating in the interfaces of ionized gas and molecular clouds is estimated at 0.1-0.3%. We confirm earlier indications of a low nitrogen content in the LMC. Evidence for solid state emission features is found in both young and evolved object; some of the YSOs are found to contain crystalline water ice.Comment: Accepted for publication in The Astronomical Journal. This paper accompanies the Summer 2009 SAGE-Spec release of 48 MIPS-SED spectra, but uses improved spectrum extraction. (Fig. 2 reduced resolution because of arXiv limit.

    A Spitzer Study of Asymptotic Giant Branch Stars. III. Dust Production and Gas Return in Local Group Dwarf Irregular Galaxies

    Full text link
    We present the third and final part of a census of Asymptotic Giant Branch (AGB) stars in Local Group dwarf irregular galaxies. Papers I and II presented the results for WLM and IC 1613. Included here are Phoenix, LGS 3, DDO 210, Leo A, Pegasus dIrr, and Sextans A. Spitzer photometry at 3.6, 4.5, 5.8, and 8 are presented, along with a more thorough treatment of background galaxy contamination than was presented in papers I and II. We find that at least a small population of completely optically obscured AGB stars exists in each galaxy, regardless of the galaxy's metallicity, but that higher-metallicity galaxies tend to harbor more stars with slight IR excesses. The optical incompleteness increases for the redder AGB stars, in line with the expectation that some AGB stars are not detected in the optical due to large amounts of extinction associated with in situ dust production. Overall, there is an underrepresentation of 30% - 40% in the optical AGB within the 1 sigma errors for all of the galaxies in our sample. This undetected population is large enough to affect star formation histories derived from optical color-magnitude diagrams. As measured from the [3.6] - [4.5] color excesses, we find average stellar mass-loss rates ranging from 3.1E-7 - 6.6E-6 solar masses per year, and integrated galaxy mass-loss rates ranging from 4.4E-5 - 1.4E-3 solar masses per year. The integrated mass-loss rate is sufficient to sustain the current star formation rate in only LGS 3 and DDO 210, requiring either significant non-dusty mass loss or gas accretion in Phoenix, Leo A, Pegasus dIrr, Sextans A, WLM, and IC 1613 if they are to maintain their status as gas-rich galaxies.Comment: 25 pages, 17 figures, 9 tables, Accepted for publication in ApJ; updated affiliation for Boye

    Bortezomib Added to Daunorubicin and Cytarabine During Induction Therapy and to Intermediate-Dose Cytarabine for Consolidation in Patients With Previously Untreated Acute Myeloid Leukemia Age 60 to 75 Years: CALGB (Alliance) Study 10502

    Get PDF
    The purpose of this study was to determine remission induction frequency when bortezomib was combined with daunorubicin and cytarabine in previously untreated older adults with acute myeloid leukemia (AML) and safety of bortezomib in combination with consolidation chemotherapy consisting of intermediate-dose cytarabine (Int-DAC)

    Surveying the Agents of Galaxy Evolution in the Tidally-Stripped, Low Metallicity Small Magellanic Cloud (SAGE-SMC) II. Cool Evolved Stars

    Full text link
    We investigate the infrared (IR) properties of cool, evolved stars in the Small Magellanic Cloud (SMC), including the red giant branch (RGB) stars and the dust-producing red supergiant (RSG) and asymptotic giant branch (AGB) stars using observations from the Spitzer Space Telescope Legacy program entitled: "Surveying the Agents of Galaxy Evolution in the Tidally-stripped, Low Metallicity SMC", or SAGE-SMC. The survey includes, for the first time, full spatial coverage of the SMC bar, wing, and tail regions at infrared (IR) wavelengths (3.6 - 160 microns). We identify evolved stars using a combination of near-IR and mid-IR photometry and point out a new feature in the mid-IR color-magnitude diagram that may be due to particularly dusty O-rich AGB stars. We find that the RSG and AGB stars each contribute ~20% of the global SMC flux (extended + point-source) at 3.6 microns, which emphasizes the importance of both stellar types to the integrated flux of distant metal-poor galaxies. The equivalent SAGE survey of the higher-metallicity Large Magellanic Cloud (SAGE-LMC) allows us to explore the influence of metallicity on dust production. We find that the SMC RSG stars are less likely to produce a large amount of dust (as indicated by the [3.6]-[8] color). There is a higher fraction of carbon-rich stars in the SMC, and these stars appear to able to reach colors as red as their LMC counterparts, indicating that C-rich dust forms efficiently in both galaxies. A preliminary estimate of the dust production in AGB and RSG stars reveals that the extreme C-rich AGB stars dominate the dust input in both galaxies, and that the O-rich stars may play a larger role in the LMC than in the SMC.Comment: Accepted for publication in AJ. 25 pages, 36 figures, Table 4 will be available electronically from A
    • …
    corecore