35 research outputs found

    Development of a Multimodal Apparatus to Generate Biomechanically Reproducible Spinal Cord Injuries in Large Animals

    Get PDF
    Rodents are widespread animal models in spinal cord injury (SCI) research. They have contributed to obtaining important information. However, some treatments only tested in rodents did not prove efficient in clinical trials. This is probably a result of significant differences in the physiology, anatomy, and complexity between humans and rodents. To bridge this gap in a better way, a few research groups use pig models for SCI. Here we report the development of an apparatus to perform biomechanically reproducible SCI in large animals, including pigs. We present the iterative process of engineering, starting with a weight-drop system to ultimately produce a spring-load impactor. This device allows a graded combination of a contusion and a compression injury. We further engineered a device to entrap the spinal cord and prevent it from escaping at the moment of the impact. In addition, it provides identical resistance around the cord, thereby, optimizing the inter-animal reproducibility. We also present other tools to straighten the vertebral column and to ease the surgery. Sensors mounted on the impactor provide information to assess the inter-animal reproducibility of the impacts. Further evaluation of the injury strength using neurophysiological recordings, MRI scans, and histology shows consistency between impacts. We conclude that this apparatus provides biomechanically reproducible spinal cord injuries in pigs

    Volume and densities of chronic subdural haematoma obtained from CT imaging as predictors of postoperative recurrence: a prospective study of 107 operated patients

    Get PDF
    BACKGROUND: Chronic subdural haematoma (CSDH) is a common entity in neurosurgery with a considerable postoperative recurrence rate. Computerised tomography (CT) scanning remains the most important diagnostic test for this disorder. The aim of this study was to characterise the relationship between the recurrence of CSDH after treatment with burr-hole irrigation and closed-system drainage technique and CT scan features of these lesions to assess whether CT findings can be used to predict recurrence. METHODS: We investigated preoperative and postoperative CT scan features and recurrence rate of 107 consecutive adult surgical cases of CSDH and assessed any relationship with univariate and multivariate regression analyses. RESULTS: Seventeen patients (15.9 %) experienced recurrence of CSDH. The preoperative haematoma volume, the isodense, hyperdense, laminar and separated CT densities and the residual total haematoma cavity volume on the 1st postoperative day after removal of the drainage were identified as radiological predictors of recurrence. If the preoperative haematoma volume was under 115 ml and the residual total haematoma cavity volume postoperatively was under 80 ml, the probability of no recurrence was very high (94.4 % and 97.4 % respectively). CONCLUSIONS: These findings from CT imaging may help to identify patients at risk for postoperative recurrence

    Exome Sequencing of a Multigenerational Human Pedigree

    Get PDF
    Over the next few years, the efficient use of next-generation sequencing (NGS) in human genetics research will depend heavily upon the effective mechanisms for the selective enrichment of genomic regions of interest. Recently, comprehensive exome capture arrays have become available for targeting approximately 33 Mb or ∼180,000 coding exons across the human genome. Selective genomic enrichment of the human exome offers an attractive option for new experimental designs aiming to quickly identify potential disease-associated genetic variants, especially in family-based studies. We have evaluated a 2.1 M feature human exome capture array on eight individuals from a three-generation family pedigree. We were able to cover up to 98% of the targeted bases at a long-read sequence read depth of ≥3, 86% at a read depth of ≥10, and over 50% of all targets were covered with ≥20 reads. We identified up to 14,284 SNPs and small indels per individual exome, with up to 1,679 of these representing putative novel polymorphisms. Applying the conservative genotype calling approach HCDiff, the average rate of detection of a variant allele based on Illumina 1 M BeadChips genotypes was 95.2% at ≥10x sequence. Further, we propose an advantageous genotype calling strategy for low covered targets that empirically determines cut-off thresholds at a given coverage depth based on existing genotype data. Application of this method was able to detect >99% of SNPs covered ≥8x. Our results offer guidance for “real-world” applications in human genetics and provide further evidence that microarray-based exome capture is an efficient and reliable method to enrich for chromosomal regions of interest in next-generation sequencing experiments

    Absence of Dystrophin Related Protein-2 disrupts Cajal bands in a patient with Charcot-Marie-Tooth disease

    Get PDF
    Using exome sequencing in an individual with Charcot-Marie-Tooth disease (CMT) we have identified a mutation in the X-linked dystrophin-related protein 2 (DRP2) gene. A 60-year-old gentleman presented to our clinic and underwent clinical, electrophysiological and skin biopsy studies. The patient had clinical features of a length dependent sensorimotor neuropathy with an age of onset of 50 years. Neurophysiology revealed prolonged latencies with intermediate conduction velocities but no conduction block or temporal dispersion. A panel of 23 disease causing genes was sequenced and ultimately was uninformative. Whole exome sequencing revealed a stop mutation in DRP2, c.805C>T (Q269*). DRP2 interacts with periaxin and dystroglycan to form the periaxin-DRP2-dystroglycan complex which plays a role in the maintenance of the well-characterized Cajal bands of myelinating Schwann cells. Skin biopsies from our patient revealed a lack of DRP2 in myelinated dermal nerves by immunofluorescence. Furthermore electron microscopy failed to identify Cajal bands in the patient's dermal myelinated axons in keeping with ultrastructural pathology seen in the Drp2 knockout mouse. Both the electrophysiologic and dermal nerve twig pathology support the interpretation that this patient's DRP2 mutation causes characteristic morphological abnormalities recapitulating the Drp2 knockout model and potentially represents a novel genetic cause of CMT

    The Human Phenotype Ontology in 2017.

    Get PDF
    Deep phenotyping has been defined as the precise and comprehensive analysis of phenotypic abnormalities in which the individual components of the phenotype are observed and described. The three components of the Human Phenotype Ontology (HPO; www.human-phenotype-ontology.org) project are the phenotype vocabulary, disease-phenotype annotations and the algorithms that operate on these. These components are being used for computational deep phenotyping and precision medicine as well as integration of clinical data into translational research. The HPO is being increasingly adopted as a standard for phenotypic abnormalities by diverse groups such as international rare disease organizations, registries, clinical labs, biomedical resources, and clinical software tools and will thereby contribute toward nascent efforts at global data exchange for identifying disease etiologies. This update article reviews the progress of the HPO project since the debut Nucleic Acids Research database article in 2014, including specific areas of expansion such as common (complex) disease, new algorithms for phenotype driven genomic discovery and diagnostics, integration of cross-species mapping efforts with the Mammalian Phenotype Ontology, an improved quality control pipeline, and the addition of patient-friendly terminology

    Effects of a moderate hypothermia on neurological outcome, histological and magnetic resonance imaging findings after induction of an epidural focal mass lesion in rodents

    No full text
    In dieser experimentellen Studie wurde der Einfluss einer moderaten Hypothermie nach Induktion einer epiduralen, extraaxialen Raumforderung auf das neurologische Outcome, auf histopathologische Veränderungen und mittels bildgebender Methoden untersucht. Der Hauptaugenmerk wurde dabei eindeutig auf die neurologischen Verlaufsuntersuchungen mit Hilfe einer neuropsychologischen Testbatterie gelegt.Damit konnte in etwa die Hauptphase der klinischen Rekonvaleszens nach Trauma abgedeckt werden.Zudem hatten die meisten experimentellen Arbeiten bereits nach wesentlich kürzeren Zeiträumen ihre Nachuntersuchungen abgeschlossen.Die Gesamtmortalität betrug bei den normotherm behandelten Tieren 55% und bei den hypotherm behandelten Tieren 45%. Der Unterschied betrug damit nur 10% und war nicht signifikant. Betrachtet man aber die Mortalitätsraten differenzierter, so zeigt sich bezüglich der rein schädigungsbedingten Mortalität als Folge von schweren neurologischen Defiziten wie Hemiparese, Inaktivität und damit verbundenen dramatischen Gewichtsverlust eine Mortalität von 5% für die Hypothermiegruppe und 30% in der Normothermiegruppe. Dies findet seine Bestätigung auch in anderen experimentellen Untersuchungen. Für die Anwendung von Hypothermie bei Schädel – Hirn –Traumen und zerebralen Ischämien in klinischen Studien ist die Datenlage bisher noch widersprüchlich. Die bisher größte Multicenterstudie in den USA von 1994 -1998 musste bei 392 Patienten mit SHT abgebrochen werden, nachdem kein therapeutischer Effekt unter Hypothermie festzustellen war (Clifton et al., 2001¹). Nähere Analysen zeigten jedoch eine Verbesserung des Outcomes bei Patienten unter 45 Jahren welche bei Aufnahme bereits hypothermen Bedingungen ausgesetzt waren. Damit stellt sich natürlich die Frage nach dem optimalen Zeitfenster für den Beginn einer hypothermen Behandlung. Als therapeutische Konsequenz erscheint damit unter Umständen ein sofortiger Beginn der Hypothermiebehandlung mit Eintreffen des Notarztes als wirkungsvoller. Zusätzlich konnten wiederum neueste Untersuchungen bei Patienten mit zerebraler Ischämie nach Herz- und Kreislaufstillstand einen protektiven Effekt einer moderater Hypothermie auf das neurologische Outcome aufzeigen (Bernard et al., 2002; Holzer et al., 2002).In unserer Studie sollte aber auf keinen Fall der nur geringe Unterschied in der Gesamtmortalität mit 55 % in der normothermen und 45 % in der hypothermen Gruppe vernachlässigt werden. Die Annäherung der Gesamtmortalität war hierbei auf eine deutlich erhöhte Rate systemischer oder lokaler Infektionen unter den hypothermen Tieren zurückzuführen.In klinischen Studien mehren sich allerdings die Hinweise auf eine durch Hypothermie bedingte Immunsuppression und damit verbundenen erhöhten Infektionsneigung. So konnten erhöhte Pneumonieraten (Schwab et al., 1998; 2001 ; Shiozaki et al., 2001) aber auch ein vermehrtes Auftreten von Meningitiden (Shiozaki et al.,2001) beobachtet werden. Shiozaki konnte zudem signifikant erhöhte Raten von Leuko- und Thrombozytopenien sowie Elektrolytentgleisungen im hypothermen Kollektiv finden (Shiozaki et al., 2001). Schwab fand in einer eigens zur Überprüfung der Nebenwirkungen von Hypothermie bei Patienten mit zerebraler Ischämie aufgelegten Studie erhöhte Raten an Pneumonien (48%), Thrombozytopenien (70%) und Bradykardien (62%) (Schwab et al.,2001). Prospektive Studien von Patienten mit kolorektalen Eingriffen wiesen ebenso unter milder Hypothermie signifikant vermehrt Wundheilungsstörungen (Kurz et al., 1996) und eine geringere Lymphozytenaktivität auf (Beilin et al., 1998). Angewandt auf unsere Studie zeigte sich ebenfalls eine erhöhte Rate von Wundheilungsstörungen unter Hypothermie, ohne dabeijedoch zu einer Beeinflussung der Ergebnisse in den neuropsychologischen Testreihen zu führen.Abschließend kann festgehalten werden, dass in dieser Studie die Induktion einer moderaten Hypothermie nach epiduraler, extraaxialer Raumforderung, zu einer Verbesserung neurologischer Defizite und damit zu einer Besserung der Lebensqualität jener Versuchstiere führte, die den Beobachtungszeitraum überlebten. Eine Verringerung der Gesamtmortalität konnte nicht erreicht werden.The objective of this study was to evaluate the effects of a moderate, intraischemic hypothermia on the behavorial deficits up to 4 weeks after induction of a focal mass lesion. A focal epidural mass lesion was induced by an epidural balloon. The severity of the trauma was defined by the balloon volume and flattening of electroencephalography. Hypothermia (32 degrees C) was induced as soon as maximum balloon infIation was reached. Ischemia was extended over 30 min. After reperfusion, normothermic (n = 24) and hypothermic animals (n = 25) were monitored for 3 h followed by a rewarming of the cooled animals. Results were compared to sham-operated animals (n = 10). Behavioral deficits were assessed by postural reflex (PR), open field (OF), beam balance BB), beam walking (BW), and water maze tests (WMT). MRI follow-up and histology was evaluated. Sham-operated rats showed normal test results. Rats with normothermia showed worsening of test performance (PR, p 0.05). Lesion induced mortality was reduced in cooled animals but overall mortality rates were not influenced by this Therapeutic measure. Neuronal cell loss in the CA1-CA4 region (p 0.05) in hypothermic animals. Magnetic resonance imaging revealed that the lesion was more pronounced in the cortical grey matter after normothermia, whereas hypothermic animals showed more subcortical brain lacerations. In conclusion, intraischemic hypothermia significantly improved the behavioral outcome, and decreased lesion-induced mortality and the size of the lesion after an epidural focal mass lesion

    Idiopathic ventral spinal cord herniation - an increasingly recognized cause of thoracic myelopathy

    Get PDF
    Idiopathic spinal cord herniation (ISCH), where a segment of the spinal cord has herniated through a ventral defect in the dura, is a rarely encountered cause of thoracic myelopathy. The purpose of our study was to increase the clinical awareness of this condition by presenting our experience with seven consecutive cases treated in our department since 2005. All the patients developed pronounced spastic paraparesis or Brown-Séquard syndrome for several years (mean, 4.7 years) prior to diagnosis. MRI was consistent with a transdural spinal cord herniation in the mid-thoracic region in all the cases. The patients underwent surgical reduction of the herniated spinal cord and closure of the dural defect using an artificial dural patch. At follow-up, three patients experienced considerable clinical improvement, one had slight improvement, one had transient improvement, and two were unchanged. Two of the four patients with sphincter dysfunction regained sphincter control. MRI showed realignment of the spinal cord in all the patients. ISCH is probably a more common cause of thoracic myelopathy than previously recognized. The patients usually develop progressive myelopathy for several years before the correct diagnosis is made. Early diagnosis is important in order to treat the patients before the myelopathy has become advanced

    A neonatal mouse spinal cord injury model for assessing post-injury adaptive plasticity and human stem cell integration

    Get PDF
    Despite limited regeneration capacity, partial injuries to the adult mammalian spinal cord can elicit variable degrees of functional recovery, mediated at least in part by reorganization of neuronal circuitry. Underlying mechanisms are believed to include synaptic plasticity and collateral sprouting of spared axons. Because plasticity is higher in young animals, we developed a spinal cord compression (SCC) injury model in the neonatal mouse to gain insight into the potential for reorganization during early life. The model provides a platform for high-throughput assessment of functional synaptic connectivity that is also suitable for testing the functional integration of human stem and progenitor cell-derived neurons being considered for clinical cell replacement strategies. SCC was generated at T9–T11 and functional recovery was assessed using an integrated approach including video kinematics, histology, tract tracing, electrophysiology, and high-throughput optical recording of descending inputs to identified spinal neurons. Dramatic degeneration of axons and synaptic contacts was evident within 24 hours of SCC, and loss of neurons in the injured segment was evident for at least a month thereafter. Initial hindlimb paralysis was paralleled by a loss of descending inputs to lumbar motoneurons. Within 4 days of SCC and progressively thereafter, hindlimb motility began to be restored and descending inputs reappeared, but with examples of atypical synaptic connections indicating a reorganization of circuitry. One to two weeks after SCC, hindlimb motility approached sham control levels, and weight-bearing locomotion was virtually indistinguishable in SCC and sham control mice. Genetically labeled human fetal neural progenitor cells injected into the injured spinal cord survived for at least a month, integrated into the host tissue and began to differentiate morphologically. This integrative neonatal mouse model provides opportunities to explore early adaptive plasticity mechanisms underlying functional recovery as well as the capacity for human stem cell-derived neurons to integrate functionally into spinal circuits. © 2013 Boulland et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

    Development of a Multimodal Apparatus to Generate Biomechanically Reproducible Spinal Cord Injuries in Large Animals

    No full text
    Rodents are widespread animal models in spinal cord injury (SCI) research. They have contributed to obtaining important information. However, some treatments only tested in rodents did not prove efficient in clinical trials. This is probably a result of significant differences in the physiology, anatomy, and complexity between humans and rodents. To bridge this gap in a better way, a few research groups use pig models for SCI. Here we report the development of an apparatus to perform biomechanically reproducible SCI in large animals, including pigs. We present the iterative process of engineering, starting with a weight-drop system to ultimately produce a spring-load impactor. This device allows a graded combination of a contusion and a compression injury. We further engineered a device to entrap the spinal cord and prevent it from escaping at the moment of the impact. In addition, it provides identical resistance around the cord, thereby, optimizing the inter-animal reproducibility. We also present other tools to straighten the vertebral column and to ease the surgery. Sensors mounted on the impactor provide information to assess the inter-animal reproducibility of the impacts. Further evaluation of the injury strength using neurophysiological recordings, MRI scans, and histology shows consistency between impacts. We conclude that this apparatus provides biomechanically reproducible spinal cord injuries in pigs

    Development of a Multimodal Apparatus to Generate Biomechanically Reproducible Spinal Cord Injuries in Large Animals

    Get PDF
    Rodents are widespread animal models in spinal cord injury (SCI) research. They have contributed to obtaining important information. However, some treatments only tested in rodents did not prove efficient in clinical trials. This is probably a result of significant differences in the physiology, anatomy, and complexity between humans and rodents. To bridge this gap in a better way, a few research groups use pig models for SCI. Here we report the development of an apparatus to perform biomechanically reproducible SCI in large animals, including pigs. We present the iterative process of engineering, starting with a weight-drop system to ultimately produce a spring-load impactor. This device allows a graded combination of a contusion and a compression injury. We further engineered a device to entrap the spinal cord and prevent it from escaping at the moment of the impact. In addition, it provides identical resistance around the cord, thereby, optimizing the inter-animal reproducibility. We also present other tools to straighten the vertebral column and to ease the surgery. Sensors mounted on the impactor provide information to assess the inter-animal reproducibility of the impacts. Further evaluation of the injury strength using neurophysiological recordings, MRI scans, and histology shows consistency between impacts. We conclude that this apparatus provides biomechanically reproducible spinal cord injuries in pigs
    corecore