74 research outputs found
Biological treatment of the knee with platelet-rich plasma or bone marrow aspirate concentrates
ABSTRACT — Knee pathologies including focal cartilage injuries, osteoarthritis (OA), and ligament injuries are common. The poor regeneration and healing potential of cartilage has led to the search for other treatment modalities with improved healing capacity. Furthermore, with an increasing elderly population that desires to remain active, the burden of knee pathologies is expected to increase. Increased sports participation and the desire to return to activities faster is also demanding more effective and minimally invasive treatment options. Thus, the use of biologic agents in the treatment of knee pathologies has emerged as a potential option. Despite the increasing use of biologic agents for knee pathology, there are conflicting results on the efficacy of these products. Furthermore, strong data supporting the optimal preparation methods and composition for widely used biologic agents, such as platelet-rich plasma (PRP) and bone marrow aspirate concentrate (BMAC), largely remain absent from the literature. This review presents the literature on the most commonly employed biologic agents for the different knee pathologies
Synchrotron nano-FTIR spectroscopy for probing anticancer drugs at subcellular scale
The cellular response to cisplatin was assessed in human osteosarcoma cells, using synchrotron-based (SR) Fourier Transform InfraRed nanospectroscopy (nano-FTIR) at the MIRIAM beamline B22 of Diamond Light Source (UK). This label-free mapping method delivered simultaneous morphological and biochemical information on a subcellular level (i.e. 100 s nanometer or better). Based on specific spectral biomarkers, the main biochemical constituents affected by the drug were identified at distinct locations within the cell´s inner body. Cisplatin was shown to have a noteworthy effect on proteins, mostly within the cytoplasm. A clear drug impact on cellular lipids was also observed. Within current literature on s-SNOM, this nanospectroscopy work represents a first successful application in life sciences providing full fingerprint nano-FTIR spectra across intact human cancer cells
Selective adsorption of sulfur dioxide in a robust metal-organic framework material
Selective adsorption of SO2 is realized in a porous metal–organic framework material, and in-depth structural and spectroscopic investigations using X-rays, infrared, and neutrons define the underlying interactions that cause SO2 to bind more strongly than CO2 and N2
Developmental Pathway of the MPER-Directed HIV-1-Neutralizing Antibody 10E8
Antibody 10E8 targets the membrane-proximal external region (MPER) of HIV-1 gp41, neutralizes >97% of HIV-1 isolates, and lacks the auto-reactivity often associated with MPER-directed antibodies. The developmental pathway of 10E8 might therefore serve as a promising template for vaccine design, but samples from time-of-infection—often used to infer the B cell record—are unavailable. In this study, we used crystallography, next-generation sequencing (NGS), and functional assessments to infer the 10E8 developmental pathway from a single time point. Mutational analysis indicated somatic hypermutation of the 2nd-heavy chain-complementarity determining region (CDR H2) to be critical for neutralization, and structures of 10E8 variants with V-gene regions reverted to genomic origin for heavy-and-light chains or heavy chain-only showed structural differences >2 Å relative to mature 10E8 in the CDR H2 and H3. To understand these developmental changes, we used bioinformatic sieving, maximum likelihood, and parsimony analyses of immunoglobulin transcripts to identify 10E8-lineage members, to infer the 10E8-unmutated common ancestor (UCA), and to calculate 10E8-developmental intermediates. We were assisted in this analysis by the preservation of a critical D-gene segment, which was unmutated in most 10E8-lineage sequences. UCA and early intermediates weakly bound a 26-residue-MPER peptide, whereas HIV-1 neutralization and epitope recognition in liposomes were only observed with late intermediates. Antibody 10E8 thus develops from a UCA with weak MPER affinity and substantial differences in CDR H2 and H3 from the mature 10E8; only after extensive somatic hypermutation do 10E8-lineage members gain recognition in the context of membrane and HIV-1 neutralization
The state of the Martian climate
60°N was +2.0°C, relative to the 1981–2010 average value (Fig. 5.1). This marks a new high for the record. The average annual surface air temperature (SAT) anomaly for 2016 for land stations north of starting in 1900, and is a significant increase over the previous highest value of +1.2°C, which was observed in 2007, 2011, and 2015. Average global annual temperatures also showed record values in 2015 and 2016. Currently, the Arctic is warming at more than twice the rate of lower latitudes
Structure and immune recognition of trimeric pre-fusion HIV-1 Env.
CAPRISA, 2014.The human immunodeficiency virus type 1 (HIV-1) envelope (Env) spike, comprising three gp120 and three gp41 subunits, is a conformational machine that facilitates HIV-1 entry by rearranging from a mature unliganded state, through receptor-bound intermediates, to a post-fusion state. As the sole viral antigen on the HIV-1 virion surface, Env is both the target of neutralizing antibodies and a focus of vaccine efforts. Here we report the structure at 3.5 Å resolution for an HIV-1 Env trimer captured in a mature closed state by antibodies PGT122 and 35O22. This structure reveals the pre-fusion conformation of gp41, indicates rearrangements needed for fusion activation, and defines parameters of immune evasion and immune recognition. Pre-fusion gp41 encircles amino- and carboxy-terminal strands of gp120 with four helices that form a membrane-proximal collar, fastened by insertion of a fusion peptide-proximal methionine into a gp41-tryptophan clasp. Spike rearrangements required for entry involve opening the clasp and expelling the termini. N-linked glycosylation and sequence-variable regions cover the pre-fusion closed spike; we used chronic cohorts to map the prevalence and location of effective HIV-1-neutralizing responses, which were distinguished by their recognition of N-linked glycan and tolerance for epitope-sequence variation
The Heel Height Test: A Novel Tool for the Detection of Combined Anterior Cruciate Ligament and Fibular Collateral Ligament Tears.
To determine the exact value of side-to-side difference (SSD) in heel height that was associated with combined anterior cruciate ligament (ACL) and fibular collateral ligament (FCL) tears (compared with an isolated ACL tear) and determine the clinical utility of heel height SSD in the assessment of this injury pattern.Two patient groups were identified: (1) patients with isolated ACL tears and (2) patients with combined ACL-FCL tears but without additional collateral or cruciate ligament injuries. Determination of the amount of the heel height SSD was determined during the outpatient clinic visit. Receiver operator characteristic curves were used to evaluate the accuracy of diagnostic tests by plotting the true-positive (sensitivity) rate against the false-positive (1-specificity) rate at various thresholds. In addition, magnetic resonance imaging (MRI) reports were reviewed to calculate the sensitivity of MRI for the detection of FCL injury. MRI sensitivity was then compared with the sensitivity of the heel height examination.One hundred and fifty-eight patients (71 men, 87 women) in the isolated ACL tear patient group and 117 patients (60 men, 57 women) in the combined ACL-FCL tear patient group were reviewed. A 3-cm or greater SSD was found in 13 of the 158 (8.2%) isolated ACL tear patients and 84 of the 117 (72%) ACL-FCL tear patients. The sensitivity, specificity, positive predictive value, and negative predictive value of the heel height test were 72%, 92%, 86%, and 86%, respectively. The area under the receiver operator characteristic curve was found to be 0.876. After review of all preoperative MRI musculoskeletal radiology reports for patients in the ACL-FCL patient group, a sensitivity of 48% was found.The clinical heel height test resulted in high sensitivity and excellent specificity for the diagnosis of combined ACL-FCL tears compared with the sensitivity and specificity of the MRI detection of FCL injury. The information presented in the current study will improve diagnostic ability through a simple physical examination and avoid missed injuries that are known to compromise surgical outcomes.Level III, cross-sectional
- …