19 research outputs found

    Factor Varieties and Symbolic Computation

    Get PDF
    We propose an algebraization of classical and non-classical logics, based on factor varieties and decomposition operators. In particular, we provide a new method for determining whether a propositional formula is a tautology or a contradiction. This method can be autom-atized by defining a term rewriting system that enjoys confluence and strong normalization. This also suggests an original notion of logical gate and circuit, where propositional variables becomes logical gates and logical operations are implemented by substitution. Concerning formulas with quantifiers, we present a simple algorithm based on factor varieties for reducing first-order classical logic to equational logic. We achieve a completeness result for first-order classical logic without requiring any additional structure

    Knowledge-Based Synthesis of Distributed Systems Using Event Structures

    Full text link
    To produce a program guaranteed to satisfy a given specification one can synthesize it from a formal constructive proof that a computation satisfying that specification exists. This process is particularly effective if the specifications are written in a high-level language that makes it easy for designers to specify their goals. We consider a high-level specification language that results from adding knowledge to a fragment of Nuprl specifically tailored for specifying distributed protocols, called event theory. We then show how high-level knowledge-based programs can be synthesized from the knowledge-based specifications using a proof development system such as Nuprl. Methods of Halpern and Zuck then apply to convert these knowledge-based protocols to ordinary protocols. These methods can be expressed as heuristic transformation tactics in Nuprl.Comment: A preliminary version of this paper appeared in Proceedings of the 11th International Conference on Logic for Programming, Artificial Intelligence, and Reasoning LPAR 2004, pp. 449-46

    Remodeling of cholinergic input to the hippocampus after noise exposure and tinnitus induction in Guinea pigs

    Full text link
    Here, we investigate remodeling of hippocampal cholinergic inputs after noise exposure and determine the relevance of these changes to tinnitus. To assess the effects of noise exposure on the hippocampus, guinea pigs were exposed to unilateral noise for 2 hr and 2 weeks later, immunohistochemistry was performed on hippocampal sections to examine vesicular acetylcholine transporter (VAChT) expression. To evaluate whether the changes in VAChT were relevant to tinnitus, another group of animals was exposed to the same noise band twice to induce tinnitus, which was assessed using gap‐prepulse Inhibition of the acoustic startle (GPIAS) 12 weeks after the first noise exposure, followed by immunohistochemistry. Acoustic Brainstem Response (ABR) thresholds were elevated immediately after noise exposure for all experimental animals but returned to baseline levels several days after noise exposure. ABR wave I amplitude‐intensity functions did not show any changes after 2 or 12 weeks of recovery compared to baseline levels. In animals assessed 2‐weeks following noise‐exposure, hippocampal VAChT puncta density decreased on both sides of the brain by 20–60% in exposed animals. By 12 weeks following the initial noise exposure, changes in VAChT puncta density largely recovered to baseline levels in exposed animals that did not develop tinnitus, but remained diminished in animals that developed tinnitus. These tinnitus‐specific changes were particularly prominent in hippocampal synapse‐rich layers of the dentate gyrus and areas CA3 and CA1, and VAChT density in these regions negatively correlated with tinnitus severity. The robust changes in VAChT labeling in the hippocampus 2 weeks after noise exposure suggest involvement of this circuitry in auditory processing. After chronic tinnitus induction, tinnitus‐specific changes occurred in synapse‐rich layers of the hippocampus, suggesting that synaptic processing in the hippocampus may play an important role in the pathophysiology of tinnitus.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/150542/1/hipo23058.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/150542/2/hipo23058_am.pd

    Global urban environmental change drives adaptation in white clover

    Get PDF
    Urbanization transforms environments in ways that alter biological evolution. We examined whether urban environmental change drives parallel evolution by sampling 110,019 white clover plants from 6169 populations in 160 cities globally. Plants were assayed for a Mendelian antiherbivore defense that also affects tolerance to abiotic stressors. Urban-rural gradients were associated with the evolution of clines in defense in 47% of cities throughout the world. Variation in the strength of clines was explained by environmental changes in drought stress and vegetation cover that varied among cities. Sequencing 2074 genomes from 26 cities revealed that the evolution of urban-rural clines was best explained by adaptive evolution, but the degree of parallel adaptation varied among cities. Our results demonstrate that urbanization leads to adaptation at a global scale

    Perceptually Equivalent Judgments Made Visually and via Haptic Sensory-Substitution Devices

    No full text
    According to the ecological theory of perception–action, perception is primarily of affordances, which are directly perceivable opportunities for behavior. The current study evaluated participants’ ability to use vision and haptic sensory-substitution devices to support perceptual judgments of affordances involving the task of passing through apertures. Sighted participants made perceptual judgments about whether they could walk through apertures of various widths and their level of confidence in each judgment, using unrestricted vision and, when blindfolded, using two haptic sensory-substitution instruments: a cane-like wooden rod and the Enactive Torch, a device that converts distance information into vibrotactile stimuli. The boundary between aperture widths that were judged as pass-through-able versus non-pass-through-able was statistically equivalent across sensory modalities. However, participants were not as confident in their judgments using the rod or Enactive Torch as they were using vision. Additionally, participants’ judgments with the haptic instruments were significantly more accurate than with vision. The results underscore the need to assess sensory-substitution devices in the context of functional behaviors

    Systematic Deletion and Mitotic Localization of the Nuclear Pore Complex Proteins of Aspergillus nidulans

    No full text
    To define the extent of the modification of the nuclear pore complex (NPC) during Aspergillus nidulans closed mitosis, a systematic analysis of nuclear transport genes has been completed. Thirty genes have been deleted defining 12 nonessential and 18 essential genes. Several of the nonessential deletions caused conditional phenotypes and self-sterility, whereas deletion of some essential genes caused defects in nuclear structure. Live cell imaging of endogenously tagged NPC proteins (Nups) revealed that during mitosis 14 predicted peripheral Nups, including all FG repeat Nups, disperse throughout the cell. A core mitotic NPC structure consisting of membrane Nups, all components of the An-Nup84 subcomplex, An-Nup170, and surprisingly, An-Gle1 remained throughout mitosis. We propose this minimal mitotic NPC core provides a conduit across the nuclear envelope and acts as a scaffold to which dispersed Nups return during mitotic exit. Further, unlike other dispersed Nups, An-Nup2 locates exclusively to mitotic chromatin, suggesting it may have a novel mitotic role in addition to its nuclear transport functions. Importantly, its deletion causes lethality and defects in DNA segregation. This work defines the dramatic changes in NPC composition during A. nidulans mitosis and provides insight into how NPC disassembly may be integrated with mitosis
    corecore