69 research outputs found

    Dissolved Al in the zonal N Atlantic section of the US GEOTRACES 2010/2011 cruises and the importance of hydrothermal inputs

    Get PDF
    Author Posting. © The Author(s), 2014. This is the author's version of the work. It is posted here by permission of Elsevier for personal use, not for redistribution. The definitive version was published in Deep Sea Research Part II: Topical Studies in Oceanography 116 (2015): 176-186, doi:10.1016/j.dsr2.2014.07.006.The distribution of dissolved aluminium determined during GA03, the US GEOTRACES North Atlantic Transects (US GT NAZT) shows large inputs to the basin from three main sources, atmospheric deposition, outflow from the Mediterranean, and inputs from hydrothermal sources along the Mid Atlantic Ridge (MAR). The partial dissolution of atmospheric aerosols emanating from the Sahara yield high concentrations of dissolved Al in the surface waters of the basin and are used to estimate the geographical pattern of dust deposition. The Mediterranean outflow delivers a large source of dissolved Al to the intermediate waters of the eastern basin and its subsequent distribution within the basin can be explained by simple isopycnal mixing with surrounding water masses. Hydrothermal venting at the Trans-Atlantic Geotraverse (TAG) hydrothermal field in the MAR produces a neutrally buoyant plume that introduces copious quantities of dissolved Al (with concentrations of up to 40nM) to the deeper waters of the North Atlantic that can be seen advecting to the west of the MAR. The concentration of dissolved Al in the deep waters of the eastern basin of the Atlantic can be accounted for by admixing the MAR Al enriched plume water and Antarctic Bottom Water (AABW) as they pass through the Vema Fracture Zone. The data sets show no evidence for biological remineralisation of dissolved Al from Si carrier phases in deep waters.This work was supported by NSF OCE-0928741 and OCE-1137812 to CIM

    Winter mesoscale circulation on the shelf slope region of the southern Drake Passage

    Get PDF
    Author Posting. © The Author(s), 2013. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Deep Sea Research Part II: Topical Studies in Oceanography 90 (2013): 4-14, doi:10.1016/j.dsr2.2013.03.041.An austral winter cruise in July-August 2006 was conducted to study the winter circulation and iron delivery processes in the Southern Drake Passage and Bransfield Strait. Results from current and hydrographic measurements revealed a circulation pattern similar to that of the austral summer season observed in previous studies: The Shackleton Transverse Ridge (STR) in the southern Drake Passage blocks a part of the eastward Antarctic Circumpolar Current (ACC) which forces the ACC to detour southward, produces a Taylor Column over the STR, and forms an ACC jet within the Shackleton Gap, a deep channel between the STR and the shelf of Elephant Island. Observations show that to the west of the STR, the Upper Circumpolar Deep Water (UCDW) intruded onto the shelf around the South Shetland Islands while to the east of the STR, shelf waters were transported off the northern shelf of Elephant Island. Along a similar west-east transect approximately 50 km off the shelf, the northward transport of shelf waters was approximately 2.4 and 1.2 Sv in the austral winter and summer, respectively. The waters around Elephant Island primarily consist of the UCDW that has been modified by local cooling and freshening, unmodified UCDW that has recently intruded onto the shelf, and Bransfield Current water that is a mixture of shelf and Bransfield Strait waters. Weddell Sea outflows were observed which affect the hydrography and circulation in the Bransfield Strait and indirectly affect the circulation patterns in the southern Drake Passage and around Elephant Island. Two Fe enrichment and transport mechanisms are proposed that intrusions of the UCDW onto the northern shelf region of the South Shetland Islands is considered as the results of Ekman pumping due to prevailing westerly wind in the region while the offshelf transport of shelf waters in the shelf region east of Elephant Island is due to acquisition of positive vorticity by shelf waters from horizontal mixing with onshelf intruded ACC waters.This project was supported by the National Science Foundation grant numbers OPP-0229966, ANT-0444040 and ANT-0948378 to M. Zhou, OPP0230445, ANT0443403 and ANT-0948357 to C. Measures, ANT0443869 and ANT-0948442 to M. Charette, and OPP0230443, ANT0444134 and ANT0948338 to B.G. Mitchell

    Does Sea Spray Aerosol Contribute Significantly To Aerosol Trace Element Loading? A Case Study From the U.S. GEOTRACES Pacific Meridional Transect (GP15)

    Get PDF
    Atmospheric deposition represents a major input for micronutrient trace elements (TEs) to the surface ocean and is often quantified indirectly through measurements of aerosol TE concentrations. Sea spray aerosol (SSA) dominates aerosol mass concentration over much of the global ocean, but few studies have assessed its contribution to aerosol TE loading, which could result in overestimates of “new” TE inputs. Low-mineral aerosol concentrations measured during the U.S. GEOTRACES Pacific Meridional Transect (GP15; 152°W, 56°N to 20°S), along with concurrent towfish sampling of surface seawater, provided an opportunity to investigate this aspect of TE biogeochemical cycling. Central Pacific Ocean surface seawater Al, V, Mn, Fe, Co, Ni, Cu, Zn, and Pb concentrations were combined with aerosol Na data to calculate a “recycled” SSA contribution to aerosol TE loading. Only vanadium was calculated to have a SSA contribution averaging \u3e1% along the transect (mean of 1.5%). We derive scaling factors from previous studies on TE enrichments in the sea surface microlayer and in freshly produced SSA to assess the broader potential for SSA contributions to aerosol TE loading. Maximum applied scaling factors suggest that SSA could contribute significantly to the aerosol loading of some elements (notably V, Cu, and Pb), while for others (e.g., Fe and Al), SSA contributions largely remaine

    Opinion: Midwater Ecosystems Must Be Considered When Evaluating Environmental Risks of Deep-Sea Mining

    Get PDF
    Despite rapidly growing interest in deep-sea mineral exploitation, environmental research and management have focused on impacts to seafloor environments, paying little attention to pelagic ecosystems. Nonetheless, research indicates that seafloor mining will generate sediment plumes and noise at the seabed and in the water column that may have extensive ecological effects in deep midwaters (1), which can extend from an approximate depth of 200 meters to 5 kilometers. Deep midwater ecosystems represent more than 90% of the biosphere (2), contain fish biomass 100 times greater than the global annual fish catch (3), connect shallow and deep-sea ecosystems, and play key roles in carbon export (4), nutrient regeneration, and provisioning of harvestable fish stocks (5). These ecosystem services, as well as biodiversity, could be negatively affected by mining. Here we argue that deep-sea mining poses significant risks to midwater ecosystems and suggest how these risks could be evaluated more comprehensively to enable environmental resource managers and society at large to decide whether and how deep-sea mining should proceed

    Report of the Workshop Evaluating the Nature of Midwater Mining Plumes and Their Potential Effects on Midwater Ecosystems

    Get PDF
    The International Seabed Authority (ISA) is developing regulations to control the future exploitation of deep-sea mineral resources including sulphide deposits near hydrothermal vents, polymetallic nodules on the abyssal seafloor, and cobalt crusts on seamounts. Under the UN Convention on the Law of the Sea the ISA is required to adopt are taking measures to ensure the effective protection of the marine environment from harmful effects arising from mining-related activities. Contractors are required to generate environmental baselines and assess the potential environmental consequences of deep seafloor mining. Understandably, nearly all environmental research has focused on the seafloor where the most direct mining effects will occur. However, sediment plumes and other impacts (e.g., noise) from seafloor mining are likely to be extensive in the water column. Sediment plumes created on the seafloor will affect the benthic boundary layer which extends 10s to 100s of meters above the seafloor. Separation or dewatering of ore from sediment and seawater aboard ships will require discharge of a dewatering plume at some depth in the water column. It is important to consider the potential impacts of mining on the ocean’s midwaters (depths from ~200 m to the seafloor) because they provide vital ecosystem services and harbor substantial biodiversity. The better known epipelagic or sunlit surface ocean provisions the rest of the water column through primary production and export flux (This was not the focus at this workshop as the subject was considered too large and surface discharges are unlikely). It is also home to a diverse community of organisms including commercially important fishes such as tunas, billfish, and cephalopods that contribute to the economies of many countries. The mesopelagic or twilight zone (200-1000 m) is dimly lit and home to very diverse and abundant communities of organisms. Mesopelagic plankton and small nekton form the forage base for many deep-diving marine mammals and commercially harvested epipelagic species. Furthermore, detritus from the epipelagic zone falls through the mesopelagic where it is either recycled, providing the vital process of nutrient regeneration, or sinks to greater depths sequestering carbon from short-term atmospheric cycles. The waters below the mesopelagic down to the seafloor (both the bathypelagic and abyssopelagic) are very poorly characterized but are likely large reservoirs of novel biodiversity and link the surface and benthic ecosystems. Great strides have been made in understanding the biodiversity and ecosystem function of the ocean’s midwaters, but large regions, including those containing many exploration license areas and the greater depths where mining plumes will occur, remain very poorly studied. It is clear that pelagic communities are distinct from those on the seafloor and in the benthic boundary layer. They are often sampled with different instrumentation. The fauna have relatively large biogeographic ranges and they are more apt to mix freely across stakeholder boundaries, reference areas and other spatial management zones. Pelagic organisms live in a three-dimensional habitat and their food webs and populations are vertically connected by daily or lifetime migrations and the sinking flux of detritus from the epipelagic. The fauna do not normally encounter hard surfaces, making them fragile, and difficult to capture and maintain for sensitivity or toxicity studies. Despite some existing general knowledge, ecological baselines for midwater communities and ecosystems that likely will be impacted by mining have not been documented. There is an urgent need to conduct more research and evaluate the midwater biota (microbes to fishes) in regions where mining is likely to occur. Deep-sea mining activities may affect midwater organisms in a number of ways, but it is still unclear at what scale perturbations may occur. The sediment plumes both from collectors on the seafloor and from midwater discharge will have a host of negative consequences. They may cause respiratory distress from clogged gills or respiratory surfaces. Suspension feeders, such as copepods, polychaetes, salps, and appendicularians, that filter small particles from the water and form an important basal group of the food web, may suffer from dilution of their food by inorganic sediments and/or clogging of their fragile mucous filter nets. Small particles may settle on gelatinous plankton causing buoyancy issues. Metals, including toxic elements that will enter the food web, will be released from pore waters and crushed ore materials. Sediment plumes will also absorb light and change backscatter properties, reducing visual communication and bioluminescent signaling that are very important for prey capture and reproduction in midwater animals. Noise from mining activities may alter the behaviors of marine mammals and other animals. Small particles have high surface area to volume ratios, high pelagic persistence and dispersal and as a result greater potential to result in pelagic impacts. All of these potential effects will result in mortality, migration (both horizontal and vertical), decreased fitness, and shifts in community composition. Depending on the scale and duration of these effects, there could be reduction in provisioning to commercial fish species, delivery of toxic metals to pelagic food webs and hence human seafood supply, and alterations to carbon transport and nutrient regeneration services. After four days of presentations and discussions, the workshop participants came to several conclusions and synthesized recommendations. 1. Assuming no discharge in the epipelagic zone, it is essential to minimize mining effects in the mesopelagic zone because of links to our human seafood supply as well as other ecosystem services provided by the mesopelagic fauna. This minimization could be accomplished by delivering dewatering discharge well below the mesopelagic/bathypelagic transition (below ~1000 m depth). 2. Research should be promoted by the ISA and other bodies to study the bathypelagic and abyssopelagic zones (from ~1000 m depths to just above the seafloor). It is likely that both collector plumes and dewatering plumes will be created in the bathypelagic, yet this zone is extremely understudied and contains major unknowns for evaluating mining impacts. 3. Management objectives, regulations and management actions need to prevent the creation of a persistent regional scale “haze” (enhanced suspended particle concentrations) in pelagic midwaters. Such a haze would very likely cause chronic harm to deep midwater ecosystem biodiversity, structure and function. 4. Effort is needed to craft suitable standards, thresholds, and indicators of harmful environmental effects that are appropriate to pelagic ecosystems. In particular, suspension feeders are very important ecologically and are likely to be very sensitive to sediment plumes. They are a high priority for study. 5. Particularly noisy mining activities such as ore grinding at seamounts and hydrothermal vents is of concern to deep diving marine mammals and other species. One way to minimize sound impacts would be to minimize activities in the sound-fixing-and-ranging (SOFAR) channel (typically at depths of ~1000 m) which transmits sounds over very long distances. 6. A Lagrangian (drifting) perspective is needed in monitoring and management because the pelagic ecosystem is not a fixed habitat and mining effects are likely to cross spatial management boundaries. For example, potential broad-scale impacts to pelagic ecosystems should be considered in the deliberations over preservation reference zones, the choice of stations for environmental baseline and monitoring studies and other area-based management and conservation measures. 7. Much more modeling and empirical study of realistic mining sediment plumes is needed. Plume models will help evaluate the spatial and temporal extent of pelagic (as well as benthic) ecosystem effects and help to assess risks from different technologies and mining scenarios. Plume modeling should include realistic mining scenarios (including duration) and assess the spatial-temporal scales over which particle concentrations exceed baseline levels and interfere with light transmission to elucidate potential stresses on communities and ecosystem services. Models should include both near and far field-phases, incorporating realistic near field parameters of plume generation, flocculation, particle sinking, and other processes. It is important to note that some inputs to these models such as physical oceanographic parameters are lacking and should be acquired in the near-term. Plume models need to be complemented by studies to understand effects on biological components by certain particle sizes and concentrations

    Identification of a high incidence region for retroviral vector integration near exon 1 of the LMO2 locus

    Get PDF
    Therapeutic retroviral vector integration near the oncogene LMO2 is thought to be a cause of leukemia in X-SCID gene therapy trials. However, no published studies have evaluated the frequency of vector integrations near exon 1 of the LMO2 locus. We identified a high incidence region (HIR) of vector integration using PCR techniques in the upstream region close to the LMO2 transcription start site in the TPA-Mat T cell line. The integration frequency of the HIR was one per 4.46 × 10(4 )cells. This HIR was also found in Jurkat T cells but was absent from HeLa cells. Furthermore, using human cord blood-derived CD34(+ )cells we identified a HIR in a similar region as the TPA-Mat T cell line. One of the X-linked severe combined immunodeficiency (X-SCID) patients that developed leukemia after gene therapy had a vector integration site in this HIR. Therefore, the descriptions of the location and the integration frequency of the HIR presented here may help us to better understand vector-induced leukemogenesis

    The GEOTRACES Intermediate Data Product 2014

    Get PDF
    The GEOTRACES Intermediate Data Product 2014 (IDP2014) is the first publicly available data product of the international GEOTRACES programme, and contains data measured and quality controlled before the end of 2013. It consists of two parts: (1) a compilation of digital data for more than 200 trace elements and isotopes (TEIs) as well as classical hydrographic parameters, and (2) the eGEOTRACES Electronic Atlas providing a strongly inter-linked on-line atlas including more than 300 section plots and 90 animated 3D scenes. The IDP2014 covers the Atlantic, Arctic, and Indian oceans, exhibiting highest data density in the Atlantic. The TEI data in the IDP2014 are quality controlled by careful assessment of intercalibration results and multi-laboratory data comparisons at cross-over stations. The digital data are provided in several formats, including ASCII spreadsheet, Excel spreadsheet, netCDF, and Ocean Data View collection. In addition to the actual data values the IDP2014 also contains data quality flags and 1-? data error values where available. Quality flags and error values are useful for data filtering. Metadata about data originators, analytical methods and original publications related to the data are linked to the data in an easily accessible way. The eGEOTRACES Electronic Atlas is the visual representation of the IDP2014 data providing section plots and a new kind of animated 3D scenes. The basin-wide 3D scenes allow for viewing of data from many cruises at the same time, thereby providing quick overviews of large-scale tracer distributions. In addition, the 3D scenes provide geographical and bathymetric context that is crucial for the interpretation and assessment of observed tracer plumes, as well as for making inferences about controlling processes
    • 

    corecore