9 research outputs found

    Remarkable Phenytoin Sensitivity in 4 Children with SCN8A-related Epilepsy : A Molecular Neuropharmacological Approach

    Get PDF
    Mutations in SCN8A are associated with epilepsy and intellectual disability. SCN8A encodes for sodium channel Nav1.6, which is located in the brain. Gain-of-function missense mutations in SCN8A are thought to lead to increased firing of excitatory neurons containing Nav1.6, and therefore to lead to increased seizure susceptibility. We hypothesized that sodium channel blockers could have a beneficial effect in patients with SCN8A-related epilepsy by blocking the overactive Nav1.6 and thereby counteracting the effect of the mutation. Herein, we describe 4 patients with a missense SCN8A mutation and epilepsy who all show a remarkably good response on high doses of phenytoin and loss of seizure control when phenytoin medication was reduced, while side effects were relatively mild. In 2 patients, repeated withdrawal of phenytoin led to the reoccurrence of seizures. Based on the findings in these patients and the underlying molecular mechanism we consider treatment with (high-dose) phenytoin as a possible treatment option in patients with difficult-to-control seizures due to an SCN8A mutation

    Central 22q11.2 Deletions

    Get PDF
    22q11.2 deletion syndrome is one of the most common microdeletion syndromes. Most patients have a deletion resulting from a recombination of low copy repeat blocks LCR22-A and LCR22-D. Loss of the TBX1 gene is considered the most important cause of the phenotype. A limited number of patients with smaller, overlapping deletions distal to the TBX1 locus have been described in the literature. In these patients, the CRKL gene is deleted. Haploinsufficiency of this gene has also been implicated in the pathogenesis of 22q11.2 deletion syndrome. To distinguish these deletions (comprising the LCR22-B to LCR22-D region) from the more distal 22q11.2 deletions (located beyond LCR22-D), we propose the term central 22q11.2 deletions. In the present study we report on 27 new patients with such a deletion. Together with information on previously published cases, we review the clinical findings of 52 patients. The prevalence of congenital heart anomalies and the frequency of de novo deletions in patients with a central deletion are substantially lower than in patients with a common or distal 22q11.2 deletion. Renal and urinary tract malformations, developmental delays, cognitive impairments and behavioral problems seem to be equally frequent as in patients with a common deletion. None of the patients had a cleft palate. Patients with a deletion that also encompassed the MAPK1 gene, located just distal to LCR22-D, have a different and more severe phenotype, characterized by a higher prevalence of congenital heart anomalies, growth restriction and microcephaly. Our results further elucidate genotype-phenotype correlations in 22q11.2 deletion syndrome spectrum. (c) 2014 Wiley Periodicals, Inc

    Van Maldergem syndrome: further characterisation and evidence for neuronal migration abnormalities and autosomal recessive inheritance

    No full text
    We present six patients from five unrelated families with a condition originally described by Van Maldergem et al and provide follow-up studies of the original patient. The phenotype comprises a distinctive facial appearance that includes blepharophimosis, maxillary hypoplasia, telecanthus, microtia and atresia of the external auditory meatus, intellectual disability, digital contractures and skeletal anomalies together with subependymal and subcortical neuronal heterotopia. Affected patients typically have neonatal hypotonia, chronic feeding difficulties and respiratory problems. In our cohort, we have observed one instance of sibling recurrence and parental consanguinity in three of the families, indicating that autosomal recessive inheritance is likely

    Dominant missense mutations in ABCC9 cause Cantu syndrome.

    No full text
    Item does not contain fulltextCantu syndrome is characterized by congenital hypertrichosis, distinctive facial features, osteochondrodysplasia and cardiac defects. By using family-based exome sequencing, we identified a de novo mutation in ABCC9. Subsequently, we discovered novel dominant missense mutations in ABCC9 in 14 of the 16 individuals with Cantu syndrome examined. The ABCC9 protein is part of an ATP-dependent potassium (K(ATP)) channel that couples the metabolic state of a cell with its electrical activity. All mutations altered amino acids in or close to the transmembrane domains of ABCC9. Using electrophysiological measurements, we show that mutations in ABCC9 reduce the ATP-mediated potassium channel inhibition, resulting in channel opening. Moreover, similarities between the phenotype of individuals with Cantu syndrome and side effects from the K(ATP) channel agonist minoxidil indicate that the mutations in ABCC9 result in channel opening. Given the availability of ABCC9 antagonists, our findings may have direct implications for the treatment of individuals with Cantu syndrome

    Open data from the first and second observing runs of Advanced LIGO and Advanced Virgo

    Get PDF
    Advanced LIGO and Advanced Virgo are monitoring the sky and collecting gravitational-wave strain data with sufficient sensitivity to detect signals routinely. In this paper we describe the data recorded by these instruments during their first and second observing runs. The main data products are gravitational-wave strain time series sampled at 16384 Hz. The datasets that include this strain measurement can be freely accessed through the Gravitational Wave Open Science Center at http://gw-openscience.org, together with data-quality information essential for the analysis of LIGO and Virgo data, documentation, tutorials, and supporting software
    corecore