12 research outputs found
Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018.
Over the past decade, the Nomenclature Committee on Cell Death (NCCD) has formulated guidelines for the definition and interpretation of cell death from morphological, biochemical, and functional perspectives. Since the field continues to expand and novel mechanisms that orchestrate multiple cell death pathways are unveiled, we propose an updated classification of cell death subroutines focusing on mechanistic and essential (as opposed to correlative and dispensable) aspects of the process. As we provide molecularly oriented definitions of terms including intrinsic apoptosis, extrinsic apoptosis, mitochondrial permeability transition (MPT)-driven necrosis, necroptosis, ferroptosis, pyroptosis, parthanatos, entotic cell death, NETotic cell death, lysosome-dependent cell death, autophagy-dependent cell death, immunogenic cell death, cellular senescence, and mitotic catastrophe, we discuss the utility of neologisms that refer to highly specialized instances of these processes. The mission of the NCCD is to provide a widely accepted nomenclature on cell death in support of the continued development of the field
GLS2 is transcriptionally regulated by p73 and contributes to neuronal differentiation
The amino acid Glutamine is converted into Glutamate by a deamidation reaction catalyzed by the enzyme Glutaminase (GLS). Two isoforms of this enzyme have been described, and the GLS2 isoform is regulated by the tumor suppressor gene p53. Here, we show that the p53 family member TAp73 also drives the expression of GLS2. Specifically, we demonstrate that TAp73 regulates GLS2 during retinoic acid-induced terminal neuronal differentiation of neuroblastoma cells, and overexpression or inhibition of GLS2 modulates neuronal differentiation and intracellular levels of ATP. Moreover, inhibition of GLS activity, by removing Glutamine from the growth medium, impairs in vitro differentiation of cortical neurons. Finally, expression of GLS2 increases during mouse cerebellar development. Although, p73 is dispensable for the in vivo expression of GLS2, TAp73 loss affects GABA and Glutamate levels in cortical neurons. Together, these findings suggest a role for GLS2 acting, at least in part, downstream of p73 in neuronal differentiation and highlight a possible role of p73 in regulating neurotransmitter synthesis
{TAp}63 regulates bone remodeling by modulating the expression of {TNFRSF}11B/Osteoprotegerin
The transcription factor p53 has been shown to control the differentiation process of the mesenchymal stem cells (MSCs). As a matter of fact, in vivo p53 loss leads to an unbalance between bone formation versus bone erosion. Using as experimental system, human bone marrow-derived MSCs and mouse bone marrow-derived TAp63-/- MSCs, we have asked whether the other members of the p53 family, p63 and p73, are involved in controlling MSCs osteogenic differentiation. Our results indicate that both during human and mouse MSC-induced osteogenic differentiation, TAp63 isoforms are mainly upregulated in comparison with p73 isoforms. In addition, MSCs derived from TAp63 knock-out mice show delayed osteogenic differentiation. Interestingly, we found that, in contrast to p53, TAp63 trascriptionally regulates osteoprotegerin (OPG or TNFRSF11B) important for bone remodeling and osteoclastogenesis inhibition throughout the RANKL/RANK/OPG pathway. Analysis of the expression of p63 and OPG in breast cancer, which is one of the most common human cancers that metastatizes to bone, showed that p63/OPG pathway is deregulated and that a higher expression of both p63 and OPG is associated with a better patient survival, suggesting that p63/OPG axis may be further investigated as clinical biomarker for breast cancer metastasis
Skin immunity and its dysregulation in atopic dermatitis, hidradenitis suppurativa and vitiligo
While the epidermis is the frontline defense against infections and indeed, it is a peripheral lymphoid organ, the same immunological mechanisms may initiate and sustain pathological conditions. Indeed, a deregulated action against exogenous pathogens could activate a T cell response in atopic dermatitis, hidradenitis suppurativa and vitiligo. Atopic dermatitis (AD) is a chronic inflammatory skin condition with a complex pathophysiology. Although T helper 2 immunity dysregulation is thought to be the main cause of AD etiopathogenesis, the triggering mechanism is not well understood, and the treatment is often difficult. As the AD, hidradenitis suppurativa (HS) is a chronic inflammatory skin disease with a dramatic impact on the quality of life of the affected patients. The exact pathophysiology of HS is still unclear, but many evidences report a follicular obstruction and subsequent inflammation with TNF-alpha, interleukin (IL)-1 beta, IL-10, and IL-17 involvement. Vitiligo is an autoimmune epidermal disorder which consists of melanocytes destruction and skin depigmentation. Melanocytes destruction is mainly due to their increased oxidative-stress sensitivity with a consequent activation of innate first and adaptative immunity (CD8(+) T cells) later. The understanding of the triggering mechanisms of AD, HS and Vitiligo is pivotal to outline novel therapies aimed at regaining the physiological immune homeostasis of healthy skin. The aim of this review is to provide new insight on the pathogenesis of these skin diseases and to highlight on the new therapeutic approaches adopted in the treatment of AD, HS and Vitiligo
The p63 C-terminus is essential for murine oocyte integrity
The transcription factor p63 mediates different cellular responses affecting epithelial and oocyte biology. Here, the authors generate a mouse model (HET Δ13p63 mice) expressing the p63β isoform and show this affects ovary development, phenocopying a human syndrome, primary ovary insufficiency
ZNF185 is a p63 target gene critical for epidermal differentiation and squamous cell carcinoma development.
Development and maintenance of healthy stratified epithelia require the coordination of complex transcriptional programmes. The transcription factor p63, a member of the p53 family, plays a crucial role in epithelial development and homeostasis. Analysis of the p63-dependent transcriptome indicated that one important aspect of p63 functions in epithelial development is the regulation of cell-cell and cell-matrix adhesion programmes. However, limited knowledge exists on the relevant cell-cell adhesion molecules involved in physiological epithelial formation. Similarly, limited data are available to understand if deregulation of the cell-cell adhesion programme is important in tumour formation. Here, using the epidermis as an experimental model with the RNA sequencing approach, we identify a novel p63-regulated gene induced during differentiation, ZNF185. ZNF185 is an actin-cytoskeleton-associated Lin-l 1, Isl-1 and Mec-3 (LIM) domain-containing protein, whose function is poorly known. We found that p63 binds to a specific enhancer region, promoting its expression to sustain epithelial differentiation. ZNF185 silencing strongly impaired keratinocyte differentiation according to gene array analysis. ZNF185 is detected at the cell-cell periphery where it physically interacts with E-cadherin, indicating that it is important to maintain epithelial integrity beyond its pro-differentiation role. Interestingly, poorly differentiated, including head and neck, cervical and oesophageal, squamous cell carcinomas display loss of ZNF185 expression. Together, these studies reinforce that p63 is a crucial gene for maintaining epithelial tissue integrity and support the deregulation of the cell-cell adhesion programme,which plays a critical role in carcinoma development.This work has been partially supported by AIRC Grant IG-15653 to GM. This work has been mainly supported by IDI-IRCCS (RC to EC and GM) and RF-2016-02362541 (to EC)
p73 Regulates Primary Cortical Neuron Metabolism: a Global Metabolic Profile
The transcription factor p73 has been demonstrated to play a significant role in survival and differentiation of neuronal stem cells. In this report, by employing comprehensive metabolic profile and mitochondrial bioenergetics analysis, we have explored the metabolic alterations in cortical neurons isolated from p73 N-terminal isoform specific knockout animals. We found that loss of the TAp73 or ΔNp73 triggers selective biochemical changes. In particular, p73 isoforms regulate sphingolipid and phospholipid biochemical pathway signaling. Indeed, sphinganine and sphingosine levels were reduced in p73-depleted cortical neurons, and decreased levels of several membrane phospholipids were also observed. Moreover, in line with the complexity associated with p73 functions, loss of the TAp73 seems to increase glycolysis, whereas on the contrary, loss of ΔNp73 isoform reduces glucose metabolism, indicating an isoform-specific differential effect on glycolysis. These changes in glycolytic flux were not reflected by parallel alterations of mitochondrial respiration, as only a slight increase of mitochondrial maximal respiration was observed in p73-depleted cortical neurons. Overall, our findings reinforce the key role of p73 in regulating cellular metabolism and point out that p73 exerts its functions in neuronal biology at least partially through the regulation of metabolic pathways