27 research outputs found

    Nothing Lasts Forever: Environmental Discourses on the Collapse of Past Societies

    Get PDF
    The study of the collapse of past societies raises many questions for the theory and practice of archaeology. Interest in collapse extends as well into the natural sciences and environmental and sustainability policy. Despite a range of approaches to collapse, the predominant paradigm is environmental collapse, which I argue obscures recognition of the dynamic role of social processes that lie at the heart of human communities. These environmental discourses, together with confusion over terminology and the concepts of collapse, have created widespread aporia about collapse and resulted in the creation of mixed messages about complex historical and social processes

    Neurofilament depletion improves microtubule dynamics via modulation of Stat3/stathmin signaling

    Get PDF
    In neurons, microtubules form a dense array within axons, and the stability and function of this microtubule network is modulated by neurofilaments. Accumulation of neurofilaments has been observed in several forms of neurodegenerative diseases, but the mechanisms how elevated neurofilament levels destabilize axons are unknown so far. Here, we show that increased neurofilament expression in motor nerves of pmn mutant mice, a model of motoneuron disease, causes disturbed microtubule dynamics. The disease is caused by a point mutation in the tubulin-specific chaperone E (Tbce) gene, leading to an exchange of the most C-terminal amino acid tryptophan to glycine. As a consequence, the TBCE protein becomes instable which then results in destabilization of axonal microtubules and defects in axonal transport, in particular in motoneurons. Depletion of neurofilament increases the number and regrowth of microtubules in pmn mutant motoneurons and restores axon elongation. This effect is mediated by interaction of neurofilament with the stathmin complex. Accumulating neurofilaments associate with stathmin in axons of pmn mutant motoneurons. Depletion of neurofilament by Nefl knockout increases Stat3-stathmin interaction and stabilizes the microtubules in pmn mutant motoneurons. Consequently, counteracting enhanced neurofilament expression improves axonal maintenance and prolongs survival of pmn mutant mice. We propose that this mechanism could also be relevant for other neurodegenerative diseases in which neurofilament accumulation and loss of microtubules are prominent features

    Feasibility of the Big 5—Jena eCS Protocol

    Get PDF
    Purpose!#!The most common protocols in the initial diagnostic of acute ischemic stroke do not assess cardiogenic or aortic causes of embolism. These are usually evaluated later by transthoracic (TTE) or transesophageal (TEE) echocardiography. This study aimed to evaluate the feasibility of a diagnostic tool for thoracic cardiovascular thrombi according to the first experience with a new extended cardio-stroke protocol (Big 5-Jena eCS protocol) in acute stroke patients.!##!Methods!#!Retrospective analyses of the tomography scans database of the Jena University Hospital were performed. We included a total of 67 patients in the feasibility analyses, based on the evaluation of three outcomes.!##!Results!#!Primary outcome: the Big 5-Jena eCS protocol was able to detect thoracic cardiovascular thrombi in a total of 20 patients in different locations including the arch of the aorta, the aortic valve, the left atrium, the left atrial appendage, the left ventricle, and the pulmonary arteries. Secondary outcome: implementating the protocol did not result in a significant elevation of the radiation exposure compared to traditional protocols. Tertiary outcome: the new protocol identified seven cases that were considered negative by echocardiography.!##!Conclusion!#!The implementation of an extended cardio-stroke protocol is feasible, no significantly time-consuming, acquiring assessable imaging, and maintaining radiation exposure acceptable. The Big 5-Jena eCS protocol was also able to detect some thrombi not reported by TTE or TEE; however, due to our data's explorative character, a conclusive comparison with cardiac ultrasound is not possible. A prospective pilot study and clinical trials should be conducted to assess the diagnostic accuracy of this protocol compared to echocardiography and determine the potential impact on diagnostic and treatment decisions

    Baseline and interim PET-based outcome prediction in peripheral T-cell lymphoma: A subgroup analysis of the PETAL trial

    No full text
    The prospective randomized Positron Emission Tomography (PET)-Guided Therapy of Aggressive Non-Hodgkin Lymphomas (PETAL) trial was designed to test the ability of interim PET (iPET) to direct therapy. As reported previously, outcome remained unaffected by iPET-based treatment changes. In this subgroup analysis, we studied the prognostic value of baseline total metabolic tumor volume (TMTV) and iPET response in 76 patients with T-cell lymphoma. TMTV was measured using the 41% maximum standardized uptake value (SUV41max) and SUV4 thresholding methods. Interim PET was performed after two treatment cycles and evaluated using the ΔSUVmax approach and the Deauville scale. Because of significant differences in outcome, patients with anaplastic lymphoma kinase (ALK)-positive lymphoma were analyzed separately from patients with ALK-negative lymphoma. In the latter, TMTV was statistically significantly correlated with progression-free survival, with thresholds best dichotomizing the population, of 232 cm3 using SUV41max and 460 cm3 using SUV4. For iPET response, the respective thresholds were 46.9% SUVmax reduction and Deauville score 1-4 vs 5. The proportion of poor prognosis patients was 46% and 29% for TMTV by SUV41max and SUV4, and 29% and 25% for iPET response by ΔSUVmax and Deauville, respectively. At diagnosis, the hazard ratio (95% confidence interval) for poor prognosis vs good prognosis patients according to TMTV was 2.291 (1.135-4.624) for SUV41max and 3.206 (1.524-6.743) for SUV4. At iPET, it was 3.910 (1.891-8.087) for ΔSUVmax and 4.371 (2.079-9.187) for Deauville. On multivariable analysis, only TMTV and iPET response independently predicted survival. Patients with high baseline TMTV and poor iPET response (22% of the population) invariably progressed or died within the first year (hazard ratio, 9.031 [3.651-22.336]). Due to small numbers and events, PET did not predict survival in ALK-positive lymphoma. Baseline TMTV and iPET response are promising tools to select patients with ALK-negative T-cell lymphoma for early allogeneic transplantation or innovative therapies

    Positron emission tomography-guided therapy of Aggressive Non-Hodgkin Lymphomas (PETAL): A multicenter, randomized phase III trial

    No full text
    Purpose: Interim positron emission tomography (PET) using the tracer, [18F]fluorodeoxyglucose, may predict outcomes in patients with aggressive non-Hodgkin lymphomas. We assessed whether PET can guide therapy in patients who are treated with cyclophosphamide, doxorubicin, vincristine, and prednisone (CHOP). Patients and Methods: Newly diagnosed patients received two cycles of CHOP - plus rituximab (R-CHOP) in CD20-positive lymphomas - followed by a PET scan that was evaluated using the DSUVmax method. PET-positive patients were randomly assigned to receive six additional cycles of R-CHOP or six blocks of an intensive Burkitt's lymphoma protocol. PET-negative patients with CD20-positive lymphomas were randomly assigned or allocated to receive four additional cycles of R-CHOP or the same treatment with two additional doses rituximab. The primary end point was event-free survival time as assessed by log-rank test. Results: Interim PET was positive in 108 (12.5%) and negative in 754 (87.5%) of 862 patients treated, with statistically significant differences in event-free survival and overall survival. Among PET-positive patients, 52 were randomly assigned to R-CHOP and 56 to the Burkitt protocol, with 2-year event-free survival rates of 42.0% (95% CI, 28.2% to 55.2%) and 31.6% (95% CI, 19.3% to 44.6%), respectively (hazard ratio, 1.501 [95% CI, 0.896 to 2.514]; P = .1229). The Burkitt protocol produced significantly more toxicity. Of 754 PET-negative patients, 255 underwent random assignment (129 to R-CHOP and 126 to R-CHOP with additional rituximab). Event-free survival rates were 76.4% (95% CI, 68.0% to 82.8%) and 73.5% (95% CI, 64.8% to 80.4%), respectively (hazard ratio, 1.048 [95% CI, 0.684 to 1.606]; P = .8305). Outcome prediction by PET was independent of the International Prognostic Index. Results in diffuse large B-cell lymphoma were similar to those in the total group. Conclusion: Interim PET predicted survival in patients with aggressive lymphomas treated with R-CHOP. PET-based treatment intensification did not improve outcome
    corecore