196 research outputs found

    Bioactivity-guided isolation of trypanocidal coumarins and dihydro-pyranochromones from selected Apiaceae plant species.

    Get PDF
    Bioactivity-guided isolation of natural products from plant matrices is widely used in drug discovery. Here, this strategy was applied to identify trypanocidal coumarins effective against the parasite Trypanosoma cruzi, the etiologic agent of Chagas disease (American trypanosomiasis). Previously, phylogenetic relationships of trypanocidal activity revealed a coumarin-associated antichagasic hotspot in the Apiaceae. In continuation, a total of 35 ethyl acetate extracts of different Apiaceae species were profiled for selective cytotoxicity against T. cruzi epimastigotes over host CHO-K1 and RAW264.7 cells at 10 μg/mL. A flow cytometry-based T. cruzi trypomastigote cellular infection assay was employed to measure toxicity against the intracellular amastigote stage. Among the tested extracts, Seseli andronakii aerial parts, Portenschlagiella ramosissima and Angelica archangelica subsp. litoralis roots exhibited selective trypanocidal activity and were subjected to bioactivity-guided fractionation and isolation by countercurrent chromatography. The khellactone ester isosamidin isolated from the aerial parts of S. andronakii emerged as a selective trypanocidal molecule (selectivity index ∼9) and inhibited amastigote replication in CHO-K1 cells, though it was significantly less potent than benznidazole. The khellactone ester praeruptorin B and the linear dihydropyranochromones 3'-O-acetylhamaudol and ledebouriellol isolated from the roots of P. ramosissima were more potent and efficiently inhibited the intracellular amastigote replication at < 10 μM. The furanocoumarins imperatorin, isoimperatorin and phellopterin from A. archangelica inhibited T. cruzi replication in host cells only in combination, indicative of superadditive effects, while alloimperatorin was more active in fractions. Our study reports preliminary structure-activity relationships of trypanocidal coumarins and shows that pyranocoumarins and dihydropyranochromones are potential chemical scaffolds for antichagasic drug discovery

    Metabolomics reveals biomarkers in human urine and plasma to predict cytochrome P450 2D6 (CYP2D6) activity.

    Get PDF
    Individualized assessment of cytochrome P450 2D6 (CYP2D6) activity is usually performed through phenotyping following administration of a probe drug to measure the enzyme's activity. To avoid any iatrogenic harm (allergic drug reaction, dosing error) related to the probe drug, the development of non-burdensome tools for real-time phenotyping of CYP2D6 could significantly contribute to precision medicine. This study focuses on the identification of markers of the CYP2D6 enzyme in human biofluids using an LC-high-resolution mass spectrometry-based metabolomic approach. Plasma and urine samples from healthy volunteers were analysed before and after intake of a daily dose of paroxetine 20 mg over 7 days. CYP2D6 genotyping and phenotyping, using single oral dose of dextromethorphan 5 mg, were also performed in all participants. We report four metabolites of solanidine and two unknown compounds as possible novel CYP2D6 markers. Mean relative intensities of these features were significantly reduced during the inhibition session compared with the control session (n = 37). Semi-quantitative analysis showed that the largest decrease (-85%) was observed for the ion m/z 432.3108 normalized to solanidine (m/z 398.3417). Mean relative intensities of these ions were significantly higher in the CYP2D6 normal-ultrarapid metabolizer group (n = 37) compared with the poor metabolizer group (n = 6). Solanidine intensity was more than 15 times higher in CYP2D6-deficient individuals compared with other volunteers. The applied untargeted metabolomic strategy identified potential novel markers capable of semi-quantitatively predicting CYP2D6 activity, a promising discovery for personalized medicine

    Salvia officinalis for Hot Flushes: Towards Determination of Mechanism of Activity and Active Principles

    Get PDF
    Herbal medicinal products are commonly used in alternative treatment of menopausal hot flushes. In a recent clinical study, Salvia officinalis tincture was found to reduce hot flush frequency and intensity. The aim of the current study was the investigation of the mechanism(s) responsible for the anti-hot flush activity of S. officinalis and determination of its active principle(s). The 66 % ethanolic tincture, as well as the n-hexane, CHCl3, and aqueous ethanolic subextracts obtained from the tincture were studied in vitro for two of the most relevant activities, estrogenicity and selective serotonin reuptake inhibition. Because of an increased risk of menopausal women to suffer from Alzheimerʼs disease, an in vitro acetylcholinesterase inhibition assay was also employed. No activity was observed in the selective serotonin reuptake inhibition or the acetylcholinesterase inhibition assays at the highest test concentrations. The tincture showed no estrogenic effects whereas the aqueous ethanolic subextract exhibited estrogenicity in the ERLUX assay with an EC50 value of 64 µg/mL. Estrogenic activity-guided fractionation of the aqueous ethanolic subextract by a combination of reverse-phase vacuum liquid chromatography and gel chromatography identified luteolin-7-O-glucuronide (EC50 129 µg/mL) as the active component of the vacuum liquid chromatography fraction 4 (EC50 69 µg/mL). Luteolin-7-O-glucoside was identified as the putative estrogenic principle of the most potent minor fraction (7.6.7.6, EC50 0.7 µg/mL) obtained from the initial vacuum liquid chromatography fraction 7 (EC50 3 µg/mL). This study suggests the involvement of common and ubiquitous estrogenic flavonoids in the anti-hot flush effect of Salvia officinalis, a safe and commonly used herbal medicinal product during the menopause

    Metabolite profile of Nectandra oppositifolia Nees &amp; Mart. and assessment of antitrypanosomal activity of bioactive compounds through efficiency analyses

    Get PDF
    EtOH extracts from the leaves and twigs of Nectandra oppositifolia Nees & Mart. shown activity against amastigote forms of Trypanosoma cruzi. These extracts were subjected to successive liquid-liquid partitioning to afford bioactive CH2Cl2 fractions. UHPLC-TOF-HRMS/MS and molecular networking were used to obtain an overview of the phytochemical composition of these active fractions. Aiming to isolate the active compounds, both CH2Cl2 fractions were subjected to fractionation using medium pressure chromatography combined with semi-preparative HPLC-UV. Using this approach, twelve compounds (1-12) were isolated and identified by NMR and HRMS analysis. Several isolated compounds displayed activity against the amastigote forms of T. cruzi, especially ethyl protocatechuate (7) with EC50 value of 18.1 μM, similar to positive control benznidazole (18.7 μM). Considering the potential of compound 7, protocatechuic acid and its respective methyl (7a), n-propyl (7b), n-butyl (7c), n-pentyl (7d), and n-hexyl (7e) esters were tested. Regarding antitrypanosomal activity, protocatechuic acid and compound 7a were inactive, while 7b-7e exhibited EC50 values from 20.4 to 11.7 μM, without cytotoxicity to mammalian cells. These results suggest that lipophilicity and molecular complexity play an important role in the activity while efficiency analysis indicates that the natural compound 7 is a promising prototype for further modifications to obtain compounds effective against the intracellular forms of T. cruzi

    Normal phase HPLC profiling of the acetylcholinesterase activity in apolar plant extracts

    Get PDF
    Among nineteen evaluated Clusiaceous species, one stem bark CH2Cl2 crude extract was selected based on a significant inhibition of acetylcholinesterase (AChE) using the micro-dilution Ellman\u27s method [1]. A normal phase HPLC profiling with micro-fractionation of this extract provided discrete fractions every 20 seconds. In order to obtain a comprehensive profiling of AChE activity all microfractions were tested [2] in dilution assay (Ellman) as well as by bioautography (the Fast Blue B salt method). Furthermore the potency of inhibition was evaluated both by keeping the genuine concentration within the extract and after normalisation to a standard concentration level. From the active fractions five pure compounds were isolated and identified. The different methods of sample preparation and biological evaluation associated with normal-phase micro-fractionation of plant extracts are critically discussed

    Identification of antifungal compounds from the Root Bark of Cordia anisophylla J.S. Mill.

    Get PDF
    The dichloromethane extract of the root bark of the Panamanian plant Cordia anisophylla J.S. Mill. (Boraginaceae) presented antifungal activity against a susceptible strain of Candida albicans in a bioautography primary screening. The susceptible strain was used to detect minor active compounds that would not have been detected using a classical approach. In order to identify the antimicrobial compounds, the active extract was fractionated by semi-preparative high-performance liquid chromatography and the fractions were submitted to the antifungal bioassay. This procedure enabled a precise localization of the antifungal compounds directly in the chromatogram of the crude extract and allowed for an efficient, targeted isolation. Four compounds were isolated, one of which is a new natural product. The structures were elucidated using spectroscopic methods. Their antifungal properties were evaluated by determination of the minimum inhibitory quantity and concentration by bioautography and dilution assay against a wild type strain of C. albicans

    ROS1 5-methylcytosine DNA glycosylase is a slow-turnover catalyst that initiates DNA demethylation in a distributive fashion

    Get PDF
    Arabidopsis ROS1 belongs to a family of plant 5-methycytosine DNA glycosylases that initiate DNA demethylation through base excision. ROS1 displays the remarkable capacity to excise 5-meC, and to a lesser extent T, while retaining the ability to discriminate effectively against C and U. We found that replacement of the C5-methyl group by halogen substituents greatly decreased excision of the target base. Furthermore, 5-meC was excised more efficiently from mismatches, whereas excision of T only occurred when mispaired with G. These results suggest that ROS1 specificity arises by a combination of selective recognition at the active site and thermodynamic stability of the target base. We also found that ROS1 is a low-turnover catalyst because it binds tightly to the abasic site left after 5-meC removal. This binding leads to a highly distributive behaviour of the enzyme on DNA substrates containing multiple 5-meC residues, and may help to avoid generation of double-strand breaks during processing of bimethylated CG dinucleotides. We conclude that the biochemical properties of ROS1 are consistent with its proposed role in protecting the plant genome from excess methylation

    A comprehensive study on molten conductive polymer composites under extensional deformation : relationship between filler network structure and electrical conductivity

    No full text
    Ces travaux constituent une étude approfondie se focalisant sur l'évolution des propriétés viscoélastique et électrique de composites à matrices thermoplastiques faiblement chargés en nanotubes de carbone. Un ajout suffisant de particules conductrices électriques entraine la formation d'un réseau percolant rendant le matériau conducteur électrique. Lors de l'écoulement du composite, la structure du réseau va fortement évoluer changeant ainsi les propriétés macroscopiques. Par exemple, le thermoformage d'une feuille de composite ayant initialement de bonnes propriétés électriques peut générer une pièce isolante.La majeure partie des études référencées dans la littérature se restreignent à l'analyse rhéologique de ces matériaux dans le domaine linéaire. C'est pourquoi, nous avons mis en place une toute nouvelle expérience. Celle-ci permet de mesurer simultanément la conductivité électrique d'une éprouvette lorsqu'elle est déformée en élongation à l'état fondu. Nous avons ainsi pu mettre évidence le lien étroit entre les variations de conductivité électrique avec la dynamique moléculaire du polymère et la vitesse de déformation. Il est désormais possible de décrire les variations de conductivité par le biais du nombre de Weissenberg, produit du temps de relaxation de la matrice et de la vitesse de déformation. De plus, nous avons montré qu'il était possible de réduire la concentration massique de NTC par ajout de nodules de polybutadiène sans impacter les conditions de mise en forme. Enfin, nous proposons un modèle qui permet de décrire les évolutions de conductivité électrique de composites subissant des déformations à l'état fondu, et ce, pour une gamme très large de conditions expérimentalesIn this work we present a complete study of the electrical conductivity evolution of molten nano-composites under extensional deformation. The conductive polymer composites are a pure Polystyrene matrix filled with Carbon Nanotubes. The conductivity properties of the composites rely on the formation of a percolated network through the material. When the composite flows, the filler network can be disrupted, altering the conductivity of the composite. Thus, after a small deformation a moderately conductive composite can turn into an insulating material. From an applied viewpoint, for instance, the thermoforming of a composite sheet with good electrical properties can lead to an insulating finished part. In the literature, the studies mainly focus on the conductivity variation of molten composites under small shear deformation at low shear rates.This study aims at analyzing the microstructure evolution when the molten composite undergoes large deformation and especially in elongation. That is why we developed a new experiment that gives the possibility to monitor the specimen conductivity during its extensional deformation all the while recording the elongation stress. On the one hand, we highlighted a close relationship between the extensional conditions that are the specimen temperature and the extensional rate with the conductivity variation. Indeed, the conductivity variations can be described by means of the Weissenberg number that takes into account the polymer dynamics and the extensional rate. On the other hand, we have shown that the volume confinement of the filler, here achieved by the presence of polybutadiene nodules, gives the possibility to decrease the filler amount without impacting the process-ability of the composites. Finally, we propose a model that describes the conductivity evolution of CPC under extensional and planar flow. It links the structural evolution of the filler network to the macroscopic properties of the composit
    corecore