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Abstract Recognition of conserved microbial molecules activates immune responses in plants, a

process termed pattern-triggered immunity (PTI). Similarly, insect eggs trigger defenses that

impede egg development or attract predators, but information on the nature of egg-associated

elicitors is scarce. We performed an unbiased bioactivity-guided fractionation of eggs of the

butterfly Pieris brassicae. Nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry

of active fractions led to the identification of phosphatidylcholines (PCs). PCs are released from

insect eggs, and they induce salicylic acid and H2O2 accumulation, defense gene expression and

cell death in Arabidopsis, all of which constitute a hallmark of PTI. Active PCs contain primarily C16

to C18-fatty acyl chains with various levels of desaturation, suggesting a relatively broad ligand

specificity of cell-surface receptor(s). The finding of PCs as egg-associated molecular patterns

(EAMPs) illustrates the acute ability of plants to detect conserved immunogenic patterns from their

enemies, even from seemingly passive structures such as eggs.

Introduction
In nature, plants are frequently confronted with microbial pathogens or herbivores, and thus have

evolved an efficient immune response that mainly relies on initial detection of the attacker, followed

by production of defense proteins and toxic metabolites (Jones and Dangl, 2006; Schuman and

Baldwin, 2016). What plants perceive is the presence of conserved microbe-associated molecular

patterns (MAMPs) and activate pattern-triggered immunity (PTI) (Ranf, 2017). In bacteria, flagellin,

peptidoglycan or medium-chain 3-hydroxy-fatty acids constitute well-studied sources of MAMPs that

are sensed by specific plant cell-surface receptor-like kinases; the same is true for chitin, a structural

component of fungal cell walls (Boutrot and Zipfel, 2017; Ranf, 2017; Kutschera et al., 2019).

Similarly, oral secretions (OS) from feeding insect larvae contain herbivore-associated molecular

patterns (HAMPs) that trigger defense responses (Wu and Baldwin, 2010; Erb and Reymond,

2019). Despite the finding that OS from different insect species activate plant defenses, only a few

HAMPs have been characterized chemically (Stahl et al., 2018). Volicitin, for example, is a fatty acid-

amino acid conjugate from several chewing herbivores OS and triggers the release of plant volatile

organic compounds that attract parasitic wasps (Alborn et al., 1997). Inceptin is a proteolytic frag-

ment of a plant chloroplast ATPase found in Spodoptera frugiperda OS and induces the production

of volatiles and defense compounds (Schmelz et al., 2006). However, contrary to MAMPs, receptors

for HAMPs have not yet been described.
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Although a seemingly harmless developmental stage of herbivores, insect eggs trigger efficient

plant defenses that include necrosis, callus formation, accumulation of ovicidal compounds and

release of volatiles to attract egg predators (Reymond, 2013; Hilker and Fatouros, 2015). The

large white butterfly Pieris brassicae deposits batches of 20–30 eggs onto Arabidopsis leaves, caus-

ing a large transcriptional reprogramming that is drastically distinct from the expression profile trig-

gered by larval feeding (Little et al., 2007). Also, P. brassicae eggs induce localized cell death,

accumulation of reactive oxygen species (ROS) and salicylic acid (SA), and expression of PTI-related

genes, suggesting that egg-associated molecular patterns (EAMPs) activate a response that is similar

to the response induced by microbial pathogens (Little et al., 2007; Bruessow et al., 2010; Gouh-

ier-Darimont et al., 2013). Studies with other Brassicaceae reported localized necrosis, SA accumu-

lation and defense gene expression upon P. brassicae oviposition or egg extract (EE) treatment

(Bruessow and Reymond, 2007; Fatouros et al., 2008; Fatouros et al., 2014; Bonnet et al., 2017;

Griese et al., 2017). In Brassica nigra, variation in the intensity of localized cell death was negatively

correlated with egg survival (Fatouros et al., 2014; Griese et al., 2017). In addition, Arabidopsis

displays variation in the strength of egg-induced necrosis between accessions, but whether this is

sufficient to reduce egg survival needs to be evaluated (Reymond, 2013).

So far, only a few EAMPs have been identified and they were found in secretions associated with

eggs or in adults. Bruchins are C22-C24 long-chain a,g-diols esterified at one or both ends with 3-

hydroxypropanoic acid. They are present in bodies of cowpea weevil and induce cell division in pea

pods, creating a neoplastic tissue that presumably impedes larval entry (Doss et al., 2000). Acces-

sory reproductive gland (ARG) secretions covering eggs of P. brassicae trigger arrest of the parasit-

oid wasp Trichogramma brassicae on Brassica oleracea and Arabidopsis by modifying leaf surface

chemistry (Fatouros et al., 2008; Blenn et al., 2012). This indirect defense response is activated by

benzyl cyanide and indole, both male-derived anti-aphrodisiacs found in ARG secretions of P. brassi-

cae and P. rapae, respectively (Fatouros et al., 2008; Fatouros et al., 2009). Proteins or peptides

in oviduct secretions from the pine sawfly Diprion pini and the elm leaf beetle Xanthogaleruca

luteola are responsible for oviposition-induced volatile emission in pine needle and elm leaves,

respectively, but their sequence needs to be characterized (Meiners and Hilker, 2000; Hilker et al.,

2005).

Currently, the nature of EAMPs that induce immune responses in Arabidopsis is unknown. We

previously reported that a crude P. brassicae EE (soluble fraction from crushed eggs) induced similar

responses as oviposition, including ROS and SA accumulation, cell death and defense gene induc-

tion (Little et al., 2007; Bruessow et al., 2010; Gouhier-Darimont et al., 2013). The eggshell was

not active implying that gene-induction activity is not associated with covering secretions but is con-

tained in the egg (Bruessow et al., 2010). Here, we show that phosphatidylcholines (PCs) from P.

brassicae eggs trigger SA accumulation and immune responses. We postulate that PCs represent

bona fide EAMPs and that plants have evolved receptors to perceive an early stage of insect attack.

Results

Purification of P. brassicae eggs
In order to find marker genes that we could robustly use to identify defense-inducing compounds in

eggs, we performed an RNA sequencing experiment using Arabidopsis plants on which eggs were

naturally oviposited by P. brassicae butterflies and compared it with plants treated with EE. After 5

days, hundreds of genes were significantly upregulated by each treatment and their induction was

highly similar between treatments (Figure 1—figure supplement 1, Supplementary file 1). This

conserved transcriptomic signature strongly supports our previous observations that oviposition and

EE treatment trigger comparable responses in Arabidopsis. Amongst the most highly upregulated

genes, we selected PATHOGENESIS-RELATED PROTEIN1 (PR1, At2g14610), SENESCENCE-ASSO-

CIATED GENE 13 (SAG13, At2g29350), and KUNITZ INHIBITOR PROTEIN 1 (TI, At1g73260), which

were equally induced by oviposition and EE treatment (Figure 1—figure supplement 1,

Supplementary file 1) and which were initially found to be strongly responsive to P. brassicae ovipo-

sition and to treatment by EE from different insect species (Bruessow et al., 2010). Furthermore,

PR1 is a known marker gene of the SA pathway (van Loon et al., 2006), whereas SAG13 and TI have
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been shown to be involved in the regulation of cell death and defense (Brodersen et al., 2002;

Li et al., 2008; Dhar et al., 2020).

Preliminary tests indicated that egg-derived defense eliciting compounds are of lipidic nature

(Bruessow et al., 2010; Gouhier-Darimont et al., 2013). To confirm this observation, we used Clea-

nascite solid-phase aqueous reagent to selectively adsorb lipids from EE. Application of the lipid-

containing phase to PR1::GUS, SAG13::GUS, and TI::GUS Arabidopsis reporter lines triggered

strong and localized GUS staining, similar to EE treatment. In contrast, the supernatant containing

proteins and other non-lipidic molecules was not active, indicating that defense gene-inducing mole-

cules were restricted to the lipid phase (Figure 1A). Then, we collected approximately 100’000 P.

brassicae eggs and extracted 1.1 g of total lipids with CHCl3/EtOH (1:1, v/v). The lipid fraction (LF)

was separated onto a solid-phase extraction (SPE) C18-cartridge by elution with increasing concen-

tration of MeOH followed by a final wash with ethyl acetate. Each fraction was tested for its ability

to induce PR1 expression by qPCR and compared to the defense-inducing capability of LF. Most of

the inducing activity was found in the fraction that eluted with 100% MeOH (Fr. 4, Figure 1B). Fr.

four was further separated by reverse-phase semi-preparative HPLC with evaporative light scattering

detector (ELSD) and 17 subfractions (Fr. 4.1 to Fr. 4.17) that corresponded to peaks eluting during

the isocratic phase of the gradient (see Materials and methods) were collected and tested for activ-

ity. Subfractions Fr. 4.10 to 4.17 induced PR1 expression, Fr. 4.14, Fr. 4.15, and Fr. 4.16 being the

most active ones (Figure 1C).

Identification of active PCs
To obtain information about the chemical composition of active fractions, we used one-dimensional

(1D) and two-dimensional (2D) 1H and 31P nuclear magnetic resonance (NMR) spectroscopy. The 1H

NMR spectrum of Fr. four displayed typical profile of phosphatidylcholine (PC) derivatives with sig-

nals from the glycerol part at dH 5.24, 4.44, 4.18, 4.00, and from the choline part at dH 4.28, 3.65,

3.23. The 31P NMR spectrum confirmed the presence of phosphorylated compounds and indicated

that it contained different classes of phospholipids (Figure 1—figure supplement 2). To identify

them, a 2D 1H�31P heteronuclear total correlation spectroscopy (TOCSY) experiment was per-

formed (Balsgart et al., 2016). Then, 31P signals (each corresponding to a class of phospholipid)

from each subfraction was integrated and the concentration was calculated using a solution of 48.5

mM of triphenyl phosphate as external standard. The active subfractions Fr. 4.10–4.17 contained

mainly phosphatidylcholines (PCs), with low amounts of sphingomyelin (SM) and phosphatidyletha-

nolamines (PEs) (Figure 2A). To confirm these findings, a shotgun lipidomics analysis of P. brassicae

EE by direct infusion mass spectrometry (DIMS) (Surma et al., 2015) indicated that PCs are the most

abundant lipid species (46%), followed by PEs (23%), triacylglycerides (14%), diacylglycerides (7%),

and other lipids at lower concentrations (Figure 2B). PC species contained mainly C16 to C18 fatty

acyl chains with different combinations and levels of desaturation (Figure 2C). For clarity, we employ

the following PC nomenclature: when known, the length and level of desaturation of each of the two

fatty acyl chain is indicated (e.g., PC(18:1/18:1)); otherwise, only the total number of carbons and

double bonds is mentioned (e.g., PC36:2); in addition, sn-1 or sn-2 position of different acyl chains is

not indicated.

Total PC quantification in P. brassicae EE by 1D 31P NMR or by MS shotgun lipidomics yielded a

similar concentration of ca. 5 mg/mL (Figure 2D), which corresponds to 0.5 mg of PCs per egg. In

addition, a similar lipid content and concentration were found in eggs of the generalist moth Spo-

doptera littoralis (Figure 2—figure supplement 1), which were previously shown to also induce

defense responses in Arabidopsis (Bruessow et al., 2010).

Results from the purification of P. brassicae EE clearly suggested that phospholipids, and presum-

ably PCs, are active compounds in insect eggs. To test this hypothesis, we treated EE with phospho-

lipase D, which preferentially cleaves the choline headgroup of PCs, and phospholipase A2, which

cleaves the fatty acid in position sn-2 of phospholipids. A combined treatment with both phospholi-

pases abolished PR1-inducing activity of EE, confirming that a phospholipid is crucial for triggering

defense gene expression (Figure 2E). In addition, treatment of EE with single phospholipases

showed that PLA2 reduced PR1-inducing activity of EE to ca. 20% whereas PLD was less effective,

probably because of the release of phosphatidic acid (PA) from PCs (see below) (Figure 2—figure

supplement 2). Loss of the 31P NMR signal for PCs and PEs in PLD/PLA2-treated sample indicated

that phospholipases efficiently degraded the main lipid classes of EE (Figure 2F). To further evaluate
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Figure 1. Purification of plant-defense eliciting P. brassicae egg lipids. (A) Expression of defense genes PR1, SAG13, and TI in response to purified P.

brassicae egg lipids. Purification of egg lipids was conducted using Cleanascite. GUS reporter lines were treated with the lipid-free supernatant (CS SN)

or the lipid fraction (CS LF). Untreated and egg extract (EE)-treated plants served as controls. The experiment was repeated three times with similar

results and representative pictures from one experiment are shown. (B) Relative PR1 expression upon treatment with purified P. brassicae egg lipids (LF)

and with fractions from LF separated by solid-phase extraction (SPE). LF and SPE fractions were applied at 5 mg/mL solved in 1% DMSO and plants

treated with 1% DMSO served as controls. Transcript levels represent means ± SE of three independent experiments. Different letters indicate

significant differences between treatments (ANOVA followed by Tukey’s honest significant difference test, p<0.05). (C) PR1 expression upon treatment

with fractions obtained from semi-preparative HPLC-fractionation of SPE Fr. four detected in ELSD (mV). Subfractions Fr. 4.1 to Fr. 4.17 were applied at

5 mg/mL solubilized in 1% DMSO. PR1 expression was normalized to the expression value obtained upon treatment with SPE Fr. four (indicated by the

dashed line). Transcript levels represent means ± SE of two to five independent experiments. HPLC chromatogram used for fraction collection is

indicated in orange.

The online version of this article includes the following source data and figure supplement(s) for figure 1:

Figure 1 continued on next page
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the specific contribution of PCs to the PR1-inducing activity of EE, we reconstituted a synthetic egg

lipid mix (SELM). We included the major phospholipids identified in EE and active fractions (PC, PE,

TAG, DAG, LPC, LPE; Figure 2A,B) and added them at their respective concentration. Given the

potential role of PA, we also added PA at the concentration found in EE. SELM application triggered

PR1 expression to a similar extent as EE (Figure 2G). However, when PCs were omitted from the

mix (SELM-PC), no PR1 expression could be detected, strongly suggesting that PCs are responsible

for the observed induction. Indeed, treatment with a PC-Mix triggered PR1 induction, albeit to a

lower extent, which could indicate that some additional EE components are needed for a full PC

response or that PCs are more potent when diluted in the EE solution (Figure 2G).

PCs are active molecules in eggs
To obtain further information on the chemical nature of PCs contained in active subfractions, a MS/

MS analysis was performed in positive and negative modes and precursor ion scans were analyzed.

To identify fatty acyl chains, LiAc was added and loss of specific fatty acids was detected by neutral

ion loss analysis. Results indicated the presence of PC(16:0/16:1) (m/z 732.39) in Fr. 4.14, PC(18:1/

18:3) (m/z 782.37) in Fr. 4.13 and Fr. 4.14, PC(16:1/18:1) (m/z 758.43) in Fr. 4.14, and PC36:3 (m/z

756.40) in Fr. 4.13 (Figure 2—figure supplement 3). The fatty acyl chains of PCs in other active sub-

fractions could not be determined precisely due to a lack of clear fragmentation pattern. Then, to

test whether pure PCs can activate defense gene expression, we applied commercially available

phospholipids onto PR1::GUS, SAG13::GUS, and TI::GUS Arabidopsis lines. All PCs with C16 or C18

fatty acyl chains, including PC(16:1/16:1) found in very small amount in Fr. 4.13, and the abundant

PC(18:3/18:3) identified by MS shotgun lipidomics, robustly activated gene expression in the three

reporter lines, irrespective of the level of fatty acid desaturation. A mixture of purified PCs from

chicken egg yolk was also active. In contrast, a PC with C3 fatty acyl chains, lysoPCs, PEs, lysoPEs,

and sphingomyelin (SM) were inactive (Figure 3A). Then, to test which part of the PC molecule is

important for activity, we applied different PC constituents to GUS reporter lines. The entire PC

(18:1/18:1) molecule was active, as well as PA (which lacks the choline head group), whereas choline,

phosphocholine, lysophosphocholine LPC(18:1/18:1) or 18:1 free fatty acid did not cause GUS stain-

ing (Figure 3B). We further evaluated the PR1-inducing activity of phospholipids found in EE. At the

same concentration (1 mg/mL), PC(18:1/18:1) robustly activated PR1 gene expression whereas LPC

(18:1), PE(18:1/18:1), LPE(18:1), DAG(16:0/18:1), and TAG(18:1/18:1/18:1) were inactive. As

observed with GUS lines, PA(18:1/18:1) activated PR1 gene expression as well but to a lower extent

than PC(18:1/18:1) (Figure 3—figure supplement 1). Finally, treatment with 10 mg of PC(16:1/16:1),

which corresponds to the amount of total PC found in 2 mL of EE used for experiments, triggered

PR1 expression to similar levels as EE treatment. However, lower amounts down to 0.02 mg (13.6

mM) still significantly upregulated PR1 expression, indicating that PCs are active at low micromolar

range (Figure 3C). Overall, these data indicate that PCs containing long- chain fatty acids are active

molecules in insect eggs, but that the type of fatty acid desaturation and exact length are not crucial

for activity.

PCs can diffuse out of the eggs
Having shown that PCs are abundant components of P. brassicae and S. littoralis eggs, that they are

found in PR1-inducing fractions and that they can activate defense gene expression when applied

exogenously, we wondered if phospholipids are released by eggs onto the leaf after oviposition. To

tackle this technically challenging question, we took advantage of the ability of butterflies to lay

eggs on filter paper. Eggs from P. brassicae and S. littoralis deposited on filter paper were gently

removed after one or three days, respectively, and the presence of phospholipids on the filter paper

was measured by MS/MS. Strikingly, PCs were identified on filter paper and their profile was highly

Figure 1 continued

Source data 1. Source data for Figure 1B and C.

Figure supplement 1. RNAseq analysis of Arabidopsis leaves after oviposition or egg extract (EE) treatment.

Figure supplement 1—source data 1. Source data for Figure 1—figure supplement 1.

Figure supplement 2. Two-dimensional 1H�31P TOCSY NMR experiment of SPE Fr. four in CD3OD.
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Figure 2. Identification of phospholipids as plant-defense eliciting compounds in P. brassicae eggs. (A) Phospholipid composition of HPLC fractions

was obtained by 1D 31P NMR. (B) Lipid composition of P. brassicae EE measured by MS shotgun lipidomic analysis. Values are given as percentage of

the total lipid mass and display means of three different EE preparations. (C) Absolute levels of phosphatidylcholines (PCs) in P. brassicae EE measured

by MS shotgun lipidomic analysis. Different PC species are reported according to their molecular composition with the total number of carbon atoms

Figure 2 continued on next page
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similar to the PC profile found in EE from both insects (Figure 4). For example, PC(36:2) to PC(36:6)

and PC(34:1) to PC(34:3) were the most abundant PCs from P. brassicae EE and filter paper samples.

In contrast, empty control filter paper contained low levels of PCs (Figure 4—figure supplement 1).

The total amount of PCs released by P. brassicae eggs during one day was 0.23 ± 0.05 mg / batch,

which falls in the range of active concentrations that induce PR1 expression (Figure 3C). S. littoralis

eggs released four-fold more PCs (Figure 4), which can be explained by a higher number of eggs

deposited and a longer exposure to the filter paper. We thus conclude that PCs can diffuse out of

the eggs and are released in sufficient amounts to trigger a response in the plant.

PCs and EE induce similar defense responses
Oviposition or EE application trigger similar SA accumulation, ROS production, cell death, and

defense gene expression in Arabidopsis (Little et al., 2007; Bruessow et al., 2010; Gouhier-

Darimont et al., 2013; Gouhier-Darimont et al., 2019; Figure 1—figure supplement 1). In addi-

tion, we recently showed that the receptor-like kinase LecRK-I.8 is an early component of egg-

induced signaling responses (Gouhier-Darimont et al., 2019). To test whether PCs can mimic these

responses in a LecRK-I.8-dependent manner, Arabidopsis Col-0 and a T-DNA knock-out lecrk-I.8

mutant were exposed to oviposition by P. brassicae butterflies, or treated with EE and different syn-

thetic PCs. Eggs, EE or PCs induced similar SA accumulation, and this response was significantly

reduced in lecrk-I.8 (Figure 5A). Then, although they were not as potent as oviposition or EE in trig-

gering defense gene expression, a PC-Mix, PC(16:1/16:1), and PC(18:3/18:3) induced PR1, SAG13

and TI expression in Col-0, but significantly less in lecrk-I.8 (Figure 5B). In addition, to test if these

immune responses could be triggered by a release of leaf-derived PCs that would act as damage-

associated molecular patterns (DAMPs), we gently wounded the abaxial leaf with forceps on a sur-

face equivalent to the EE- or PC-treated area. Unlike oviposition, EE or PC treatment, wounding did

not trigger SA accumulation and defense gene expression, strongly suggesting that the observed

effects are due to egg-derived PCs (Figure 5A,B). Finally, like EE treatment, PCs triggered local

accumulation of H2O2 and cell death, and the response was significantly lower in lecrk-I.8

(Figure 5C,D,E). Thus, these data show that PCs closely mimic the effect of EE in inducing PTI-like

responses, likely through LecRK-I.8 activity, supporting their role as EAMPs from insect eggs.

Figure 2 continued

and the sum of double bonds in fatty acyl chains. PC levels represent the means ± SE of three different EE preparations. (D) Absolute quantification of

total PC content in P. brassicae EE measured by 1D 31P NMR and MS shotgun lipidomic analysis. Total PC levels represent means ± SE of three

different EE preparations. (E) Relative PR1 expression upon treatment with EE and EE digested with phospholipase D (PLD) and phospholipase A2

(PLA2). Untreated plants served as controls (CTL). Transcript levels represent means ± SE of three independent experiments. Different letters indicate

significant differences between treatments (ANOVA followed by Tukey’s honest significant test, p<0.05). (F) 1D 31P NMR spectra of EE + TIPB (bottom)

and EE + PLD + PLA2 + TIBP (top). TIBP is used as an internal standard. (G) Relative PR1 expression upon treatment with EE, a synthetic egg lipid mix

(SELM), a synthetic egg lipid mix without PCs (SELM-PC), and a PC-Mix. The SELM was composed of 5 mg/mL PC-Mix, 2.5 mg/mL PE-Mix, 1.75 mg/mL

TAG(18:1/18:1/18:1), 1 mg/mLDAG(16:0/18:1), 1 mg/mL LPC-Mix, 0.2 mg/mL LPE-Mix and 0.1 mg/mL PA-Mix. The compounds were solubilized in 1%

DMSO, 0.5% Glycerol and 0.1% Tween. Plants treated with 1% DMSO, 0.5% Glycerol and 0.1% Tween (CTL) and untreated plants (UT) served as

controls. Transcript levels represent means ± SE of three independent experiments. Asterisks denote statistically significant differences between control

and treated plants (Welch’s t-test, *p<0.05). CE, cholesterol ester; DAG, diacylglycerol; LPC1 and LPC2, lysophosphatidylcholine; LPE,

lysophosphatidylethanolamine; PA, phosphatidic acid; PC, phosphatidylcholine; PE, phosphatidylethanolamine; PG, phosphatidylglycerol; PI,

phosphatidylinositol; PS, phosphatidylserine; SM, sphingomyelin; TAG, triacylglycerol.

The online version of this article includes the following source data and figure supplement(s) for figure 2:

Source data 1. Source data for Figure 2A–G.

Figure supplement 1. Comparative lipid composition of P. brassicae and S. littoralis EE.

Figure supplement 1—source data 1. Source data for Figure 2—figure supplement 1A–C.

Figure supplement 2. Relative PR1 expression upon treatment with EE and EE-treated with phospholipase A2 (PLA2) or phospholipase D (PLD).

Figure supplement 2—source data 1. Source data for Figure 2—figure supplement 2.

Figure supplement 3. Precursor ion scans for choline-containing lipids in active fractions.
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Figure 3. Extracellular phosphatidylcholines activate defense gene expression. (A) Expression of PR1, SAG13, and TI upon treatment with different PCs

and purified phospholipid preparations. Phospholipids were applied to GUS reporter lines at 1 mg/mL, solubilized in 1% DMSO, 0.5% Glycerol and 0.1%

Tween. Plants treated with 1% DMSO, 0.5% Glycerol and 0.1% Tween (CTL) served as controls. Each phospholipid was tested at least twice for its

capability to activate defense gene expression and representative pictures from one experiment are shown. (B) Expression of PR1, SAG13, and TI in

response to treatment with choline, phosphocholine, phosphatidic acid (PA) (18:1/18:1), lysophosphatidylcholine LPC(18:1), oleic acid (C18:1), and PC

(C18:1/C18:1). All compounds were applied to GUS reporter lines at 1 mg/mL, solubilized in 1% DMSO, 0.5% Glycerol and 0.1% Tween. Plants treated

with 1% DMSO, 0.5% Glycerol and 0.1% Tween (CTL) served as controls. The experiment was repeated three times with similar results and

representative pictures from one experiment are shown. (C) Relative PR1 expression upon treatment with EE and PC(C16:1/C16:1) at different

concentrations. PC(C16:1/C16:1) was solubilized in 1% DMSO, 0.5% Glycerol and 0.1% Tween. Untreated plants (UT) and plants treated with 1% DMSO,

Figure 3 continued on next page
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Discussion
We show here that purified PCs from P. brassicae eggs and synthetic PC species trigger SA and

ROS accumulation, local cell death, and defense gene induction in Arabidopsis. Since these

responses are also observed after oviposition, our findings thus support the conclusion that PCs

Figure 3 continued

0.5% Glycerol and 0.1% Tween (CTL) served as controls. Total amounts of PC(C16:1/C16:1) applied per treatment are given below each bar. Transcript

levels represent means ± SE of four independent experiments. Different letters indicate significant differences between treatments (ANOVA followed by

Tukey’s honest significant test, p<0.05). SM-mix, sphingomyelin mix.

The online version of this article includes the following source data and figure supplement(s) for figure 3:

Source data 1. Source data for Figure 3C.

Figure supplement 1. PC(18:1/18:1) and PA(18:1/18:1) activate defense gene expression in Arabidopsis.

Figure supplement 1—source data 1. Source data for Figure 3—figure supplement 1.

0.00

0.05

0.01

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

P
C

3
0
:1

P
C

3
0
:2

P
C

3
0
:3

P
C

3
0
: 4

P
C

3
0
:5

P
C

3
0
:6

P
C

3
1
:0

P
C

3
1
:1

P
C

3
1
:2

P
C

3
1
:3

P
C

3
1
:4

P
C

3
1
:5

P
C

3
1
:6

P
C

3
2
:0

P
C

3
2
:1

P
C

3
2
:2

P
C

3
2
:3

P
C

3
2
:4

P
C

3
2
:5

P
C

3
2
:6

P
C

3
3
:0

P
C

3
3
:1

P
C

3
3
:2

P
C

3
3
:3

P
C

3
3
:4

P
C

3
3
:5

P
C

3
3
:6

P
C

3
4
:0

P
C

3
4
:1

P
C

3
4
:2

P
C

3
4
:3

P
C

3
4
:4

P
C

3
4
:5

P
C

3
4
:6

P
C

3
5
:0

P
C

3
5
:1

P
C

3
5
:2

P
C

3
5
:3

P
C

3
5
:4

P
C

3
5
:5

P
C

3
5
:6

P
C

3
6
:0

P
C

3
6
:1

P
C

3
6
:2

P
C

3
6
:3

P
C

3
6
:4

P
C

3
6
:5

P
C

3
6
:6

P
C

3
7
:0

P
C

3
7
:1

P
C

3
7
:2

P
C

3
7
:3

P
C

3
7
:4

P
C

3
7
:5

P
C

3
7
:6

P
C

3
8
:0

P
C

3
8
:1

P
C

3
8
:2

P
C

3
8
:3

P
C

3
8
:4

P
C

3
8
:5

Pieris brassicae

Spodoptera littoralis

P
C

 c
o

n
te

n
t 
(n

m
o

l)
P

C
 c

o
n

te
n

t 
(n

m
o

l)

Total PC amount: 0.92 ± 0.22 µg

Total PC amount: 4.02 ± 0.42 µg

Figure 4. Phosphatidylcholines are released from intact insect eggs. MS-based quantification of PCs extracted from filter papers on which P. brassicae

(upper panel) and Spodoptera littoralis (lower panel) eggs were deposited by natural oviposition. 80 P. brassicae eggs or 150–200 s. littoralis eggs were

oviposited on filter papers and PCs from the filter papers were extracted one day and three days later, respectively. PC species are reported according

to their molecular composition with the total number of carbon atoms and the sum of double bonds in the fatty acyl chains and the levels represent the

mean ± SE of three independent samples. Total amount of PCs is describing the sum of all PC species per filter paper extract and represents the

mean ± SE of three independent samples.

The online version of this article includes the following source data and figure supplement(s) for figure 4:

Source data 1. Source data for Figure 4.

Figure supplement 1. A full MS scan of samples extracted from filter paper (A) control (no eggs) and P. brassiceae eggs oviposited on filter paper and

removed after one day.
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Figure 5. Elicitation of plant-defense responses by extracellular phosphatidylcholines depends on a functional Lectin Receptor Kinase LecRK-I.8. (A)

Endogenous levels of salicylic acid (SA) in Col-0 and lecrk-I.8 in response to P. brassicae oviposition (OP), EE, PC-Mix, PC(C16:1/C16:1), PC(C18:3/

C18:3), and wounding (W). Total SA levels represent means ± SE of four independent experiments. Asterisks denote statistically significant differences

between the same treatment of Col-0 and lecrk-I.8 (Welch’s t-test, ***p<0.001). (B) Relative expression of PR1, SAG13 and TI in Col-0 and lecrk-I.8 upon

treatment with oviposition (OP), EE, PC-Mix, PC(C16:1/C16:1), PC(C18:3/C18:3), and wounding (W). Transcript levels represent means ± SE of one

representative experiment with technical triplicates. The experiment was repeated three times with similar results. Asterisks denote statistically

significant differences between the same treatment of Col-0 and lecrk-I.8 (Welch’s t-test, *p<0.05, **p<0.01, ***p<0.001). (C) Histochemical staining of

Figure 5 continued on next page

Stahl et al. eLife 2020;9:e60293. DOI: https://doi.org/10.7554/eLife.60293 10 of 21

Research article Plant Biology

https://doi.org/10.7554/eLife.60293


contribute significantly to the biological responses to eggs. Identification of active PCs in eggs of

chewing herbivores contributes to a relatively small list of characterized EAMPs and, to the best of

our knowledge, represents the only example of EAMPs that are clearly shown to originate from the

egg itself. PCs are commonly found in storage lipids of insect eggs and are major components of

biological membranes (Bridges, 1972). Thus, like MAMPs and HAMPs, they constitute a classical

example of conserved molecules present in whole classes of attackers with an essential function for

these attackers (Boller and Felix, 2009). The observation that intact eggs or application of crude EE

without wounding induce immune responses implies that PCs originate from the eggs, are released

at the leaf surface and reach the extracellular space. In support of this hypothesis, we show that

eggs deposited on filter paper release significant amounts of PCs. The amphiphilic nature of PCs is

likely to allow diffusion through the lipidic cuticle layer and then through the hydrophilic cell wall. In

addition, wounding of a leaf is not sufficient to trigger the immune responses observed after oviposi-

tion or PC application, excluding potential leaf-derived PCs as the source of inducing activity. The

intact PCs and, to a lesser extent PA, induced PR1 expression but not lysoPCs, choline, phosphocho-

line, and 18:1 free fatty acid. PA is a known endogenous signal in plant defense and can be gener-

ated from PC by PLD activity (Lim et al., 2017). We found that PA induced PR1 expression at 1 mg/m

L, which is about 50x more than the PA concentration measured in EE. However, when PA was

included at the concentration found in eggs in a synthetic lipid mix lacking PC, the mix did not

induce PR1. We therefore conclude that PCs are the active molecules in eggs and that they may be

further processed to PA in the plant. Whether this would be due to extracellular or cytoplasmic PLD

activity seems unlikely since we showed that PE, which can also yield PA upon PLD hydrolysis, is not

active in inducing defense gene expression. Alternatively, since the immune response induced by

eggs is quite similar to the response induced by microbial pathogens, the observation that PA indu-

ces PR1, SAG13 and TI genes may be linked to its known signaling role during pathogenesis and not

related to PC activity in response to oviposition. Further research will need to address this

hypothesis.

PC levels found in a typical P. brassicae egg batch of 20 eggs correspond to ca. 10 mg (0.5 mg/

egg) and application as low as 0.02 mg of PC(16:1/16:1) induced PR1 expression. Although the exact

amount of egg-derived PCs that reach the plant extracellular space is unknown, we showed that one

P. brassicae egg batch released 0.23 mg in one day, indicating that, if this is due to a passive diffu-

sion process, up to 1 mg can reach the plant surface after 5 days when eggs hatch. These values thus

indicate that the PC amounts present at the plant surface are within the range of quantities that

were shown to activate defenses. In addition, the intensity of Arabidopsis responses to PC applica-

tion was not always as strong as with EE treatment. As EE contains several active PCs, synergistic

effects of different PCs cannot be excluded. Alternatively, EE may contain additional factors (lipid

carriers, antioxidants, adjuvant) that maintain PC stability and facilitate penetration through the plant

cuticle and cell wall.

When released in the extracellular space, PCs most likely interact with a plasma-membrane

anchored receptor, like all presently known MAMPs (Boutrot and Zipfel, 2017). Interestingly, we

show here that oviposition, EE and PC treatment induce PTI-like responses and that these responses

are drastically reduced in lecrk-I.8. It is thus tempting to speculate that LecRK-I.8, a member of clade

I L-type LecRKs, is involved in the direct perception of PCs originating from P. brassicae eggs. How-

ever, the observation that PTI response is not fully abolished in lecrk-I.8 suggests some level of

redundancy. This is supported by the fact that the 11 highly homologous clade I LecRKs are found in

Figure 5 continued

leaves of Col-0 and lecrk-I.8 with 3,3-diaminobenzidine (DAB) to detect H2O2 accumulation and trypan blue to detect cell death in response to

treatment with EE, PC-Mix, PC(C16:1/C16:1), and PC(C18:3/C18:3). The experiment was repeated twice with similar results and representative pictures

from one experiment are shown. (D, E) Quantification of H2O2 and cell death accumulation as in (C). Staining intensity was measured on images with

ImageJ software. Means ± SE of five to six leaves are shown. Asterisks denote statistically significant differences between the same treatment of Col-0

and lecrk-I.8 (Mann-Whitney U test (D) and Welch’s t-test (E), *, p<0.05; **, p<0.01; ***, p<0.001). For all experiments, PCs were applied at 1 mg/mL (A,

B) or 5 mg/mL (C–E), solubilized in 1% DMSO, 0.5% Glycerol and 0.1% Tween. Untreated plants (UT) and plants treated with 1% DMSO, 0.5% Glycerol

and 0.1% Tween (CTL) served as controls.

The online version of this article includes the following source data for figure 5:

Source data 1. Source data for Figure 5A–E.
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two clusters in the Arabidopsis genome, rendering generation of higher order mutants technically

challenging (Bellande et al., 2017). Alternatively, LecRK-I.8 may participate in a downstream amplifi-

cation step of the egg-derived signaling pathway. Clearly, future work will be needed to understand

how PCs are released from insect eggs and reach the cell surface. Moreover, binding assays with

recombinant proteins will be necessary to test the role of LecRK-I.8 and related homologues.

Arabidopsis responded to different PCs, but not to PEs or lysoPCs/PEs, indicating some level of

specificity. Plant leaf lipids are the major source of fatty acids for Lepidoptera and these fatty acids

are then incorporated into neutral lipids and phospholipids in adults and eggs (Turunen, 1974; Turu-

nen, 1990; Blomquist et al., 1991). The dominant fatty acids found in P. brassicae eggs from

females fed on Brasssica oleracea are C16 and C18 with 0 to 3 double bonds (Turunen, 1974), and

this is consistent with our shotgun MS analysis of PCs in EE. With regard to the position of double

bonds, the unsaturated fatty acyl moieties of PCs identified in P. brassicae eggs are thus likely 18:1

(n-9), 18:2(n-6), 18:3(n-3), and 16:1(n-7), which are fatty acids found in plants (McConn and Browse,

1996). It has to be noted at this stage that PCs are challenging to fully resolve by HPLC due to their

similar physicochemical properties and full structural characterization is still challenging

(Hancock et al., 2017). Thus, the exact chemical structure of all egg-derived PCs will await further

development of separation and ion activation techniques. However, we found that the relative

length (C16 or C18) and level of desaturation do not matter for PC activity and that the specificity of

the response is due to the presence of two fatty acyl chains. The ability to recognize diverse egg

PCs may be advantageous for plants as it renders the evolution of avoidance of host detection more

difficult for insect pests.

In response to oviposition by the planthopper Sogatella furcifera, some rice varieties produce the

ovicidal compound benzyl benzoate as a direct defense (Seino et al., 1996). Interestingly, purifica-

tion of female S. furcifera extracts led to the identification of two active fractions that triggered ben-

zyl benzoate accumulation. The first one contained PC(18:2/18:2) and the second was a mix of PE

(16:0/16–0), PE(16:0/18:1), and PE(18:1/18:1) (Yang et al., 2014). Since females insert their oviposi-

tor into stem or leaf sheath of the plant to deposit eggs, it is currently unknown whether PCs or PEs

derived from the ovipositor, egg-coating secretions, or eggs. Further work should clarify the origin

and specificity of active phospholipids in S. furcifera and identify downstream rice signaling compo-

nents. Although we found that PEs did not activate gene expression in Arabidopsis, these results

nevertheless suggest that PCs activate defense responses in both Arabidopsis and rice. Collectively,

identification of active PCs in P. brassicae and S. littoralis eggs and the finding of related compounds

in S. furcifera females suggests that widely divergent insect species contain similar signals that alert

plants about the presence of eggs on their leaves. Furthermore, EEs from P. brassicae, S. littoralis,

Trichoplusia ni, and Drosophila melanogaster activate PR1 expression in Arabidopsis

(Bruessow et al., 2010; Wang et al., 2017), indicating that EAMPs from different eggs activate a

common signaling pathway, potentially through the perception of PCs.

It is intriguing that plants perceive egg PCs as a potential sign of future insect attack, since PCs

are also constituents of plant and bacterial membranes. Although one could argue that the detec-

tion of egg-derived PCs is likely to occur in the extracellular space by a cell-surface receptor, hence

providing a non-self signal to the plant, leaf-derived PCs could also be passively released upon cell

damage and perceived as a sign of danger. Such ‘self’ patterns are referred to as DAMPs and are

known to trigger PTI-like responses. Known DAMPs in plants include ATP, NAD(P), and cell wall frag-

ments (Gust et al., 2017). A perception system for extracellular PC may have been an ancestral way

to detect cell damage, in conjunction with the detection of other DAMPs, which may have been co-

opted to respond to oviposition. However, we did not observe SA accumulation and defense gene

expression when we wounded leaves on an area equivalent to the site of EE or PC treatment. Thus,

whether PCs are found in the extracellular space upon wounding and activate immune responses

remains unknown and would need to be further investigated. In addition, unlike EE and PCs, wound-

ing is not known to trigger the SA pathway in Arabidopsis (Pieterse et al., 2012).

Because of their ubiquitous presence in biological membranes and storage lipids of eukaryotes,

PCs from different sources might be detected by plants as conserved features from potential ene-

mies. Strikingly, PCs can also be found in about 10% of bacterial species, including bacteria engaged

in microbe-host interactions (Aktas et al., 2010). Besides insect eggs, PCs may thus also constitute

MAMPs from bacterial or fungal pathogens. How and if plants discriminate PCs originating from

insect eggs and bacterial pathogens is an intriguing question that deserves future investigation.
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In summary, we report here the identification of PCs as EAMPs from insect eggs. PCs represent a

class of conserved molecules that have the ability to trigger immune defenses in Arabidopsis. This

study illustrates the sophistication of plant-herbivore interactions and expands the repertoire of pat-

terns that plants use to recognize insect attack.

Materials and methods

Key resources table

Reagent type
(species) or resource Designation Source or reference Identifiers

Additional
information

Gene
(Arabidopsis thaliana)

PR1 arabidopsis.org At2G14610

Gene
(Arabidopsis thaliana)

SAG13 arabidopsis.org At2G29350

Gene
(Arabidopsis thaliana)

TI arabidopsis.org At1g73260

Gene
(Arabidopsis thaliana)

LecRK-I.8 arabidopsis.org At5g60280

Genetic reagent
(Arabidopsis thaliana)

lecrk-I.8 T-DNA Nottingham Arabidopsis
stock center (NASC)

SALK_066416

Genetic reagent
(Arabidopsis thaliana)

PR1::GUS Bruessow et al., 2010

Genetic reagent
(Arabidopsis thaliana)

SAG13::GUS Bruessow et al., 2010

Genetic reagent
(Arabidopsis thaliana)

TI::GUS Bruessow et al., 2010

Genetic reagent
(Arabidopsis thaliana)

sid2-1 Nawrath and Métraux, 1999

Genetic reagent
(Acinetobacter
sp. ADPWH_lux.)

bacterial biosensor Huang et al., 2005

Sequence-
based reagent

PR1_FWD This paper PCR primers GTGGGTTAGCGAGAAGGCTA

Sequence-
based reagent

PR1_RV This paper PCR primers ACTTTGGCACATCCGAGTCT

Sequence-
based reagent

SAG13_FWD This paper PCR primers GTCGTGCATGTCAATGTTGG

Sequence-
based reagent

SAG13_RV This paper PCR primers CCAAGGACAAACAGAGTTCG

Sequence-
based reagent

TI_FWD This paper PCR primers CCTCGTGGTTGCTGGTCCAAA

Sequence-
based reagent

TI_RV This paper PCR primers CCTCTCACATAGTCTTGGACGAAA

Sequence-
based reagent

SAND_F This paper PCR primers AACTCTATGCAGCATTTGATCCACT

Sequence-
based reagent

SAND_R This paper PCR primers TGATTGCATATCTTTATCGCCATC

Plant material and insect growth conditions
Arabidopsis thaliana plants were vernalized for 2 days at 4˚C and cultivated in pots containing moist

compost. Plants were grown in a controlled environmental chamber with a 10-hr day / 14-hr night

cycle as described previously (Reymond et al., 2004). Experiments were conducted with four- to

five-week-old plants. The lecrk-I.8 T-DNA (SALK_066416) (Gouhier-Darimont et al., 2013) and sid2-

1 (Nawrath and Métraux, 1999) mutants, and the GUS reporter lines PR1::GUS, SAG13::GUS, and

TI::GUS (Bruessow et al., 2010) were described previously.
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A colony of P. brassicae (large white butterfly) was reared on Brassica oleracea var. gemmifera as

described previously (Bonnet et al., 2017). Spodoptera littoralis eggs were obtained from Syngenta

(Dr. O. Kindler, Stein, Switzerland).

EE preparation and purification of defense eliciting P. brassicae egg
lipids
EE was prepared from P. brassicae eggs collected from cabbage leaves. P. brassicae eggs were

crushed with a pestle in a 1.5 mL reaction tubes and centrifuged for 3 min at 15’000 g. The superna-

tant (EE) was stored at �20˚C. Natural oviposition and EE application to plants have been described

previously (Gouhier-Darimont et al., 2013; Gouhier-Darimont et al., 2019). After three days, P.

brassicae eggs and the EE were carefully removed from treated leaves before sample analysis.

Egg lipid purification with Cleanascite was conducted following the manufacturer’s instructions

(Biotech Support Group LLC). Briefly, EE was mixed with Cleanascite 1:1 (V:V) by gently shaking for

10 min and centrifuged for 15 min at 10’000 g for phase separation. For application of lipid-free

supernatant (CS SN) and lipid fraction (CS LF), 2 mL of CS SN and CS LF were spotted under two

leaves of each treated plant. Plants were treated for three days. Untreated plants and plants treated

with EE diluted 1:1 with H2O served as controls. Three plants were used for each treatment.

For extraction and purification of eggs lipids, ca. 100’000 P. brassicae eggs were collected over

the course of several weeks, yielding 10 mL of EE. Aliquots of 1 mL of P. brassicae EE were then

mixed dropwise with 6.25 mL of CHCl3:EtOH (1:1; V:V) and mixed on a shaker for 1 hr at room tem-

perature with additional 15 mL of CHCl3:EtOH. The extract was dried under a nitrogen stream and

resuspended in 25 mL CHCl3. After filtration through a funnel packed with cotton, CHCl3 was evapo-

rated and the lipids (lipid fraction, LF) resuspended in 10% DMSO. LFs from 10 � 1 mL aliquots (cor-

responding to 1.1 g total lipids) were pooled and further separated by SPE. For plant treatment, LF

was solved at 5 mg/mL in 1% DMSO by sonication.

For SPE fractionation, 1.1 g of LF was mixed with 7 g of silica gel and loaded to a ZEOprep 60

C18 reverse-phase cartridge (40–63 mm; BGB Analytics AG, Boeckten, Switzerland) and sealed with

sand. The cartridge was placed in a PuriFlash 400 system and eluted with 300 mL of 25% MeOH (Fr.

1), followed by 300 mL of 50% MeOH (Fr. 2), 350 mL of 75% MeOH (Fr. 3), 550 mL of 100% MeOH

(Fr. 4) and 250 mL of 100% C4H8O2 (Fr. 5). SPE fractions were dried under a nitrogen stream. For

plant treatment, aliquots of SPE fractions were solubilized in 1% DMSO at 5 mg/mL by sonication.

Eight leaves from four plants (two leaves per plant) were treated with a 2 mLdrop of each SPE frac-

tion from the abaxial side of the leaf and treated leaves were harvested three days later for analysis.

Plants treated with LF and 1% DMSO served as controls.

Further fractionation of Fr. four was performed on a semi-preparative HPLC equipment (Armen

modular spot prep II, Saint-Avé, France) connected to an ELSD Sedex LT-ELSD 85 (Sedere, Alfort-

ville, France). The fractionation was performed on 30 mg using a reverse-phase semi-preparative

X-bridge C18 column (150 � 19 mm, 5 mm; Waters, Milford, MA, USA), with water (A) and methanol

(B) containing both 0.1% formic acid as mobile phase. Separation was performed with a step gradi-

ent from 5% to 96% of B in 60 min, held during 30 min, then 96% to 100% of B in 20 min, held dur-

ing 20 min. The flow rate was fixed at 17 mL/min. The UV detection in the scan mode (210–366 nm)

and the ELSD conditions at 1 mL/min, 40˚C, 3.1 bar N2 and gain 8. Separation of Fr. four led to 17

subfractions (Fr. 4.1 to Fr. 4.17) with clearly distinguishable ELSD signal, which were eluted during

the isocratic phase of the gradient (96% of B, 60–90 min) and were collected, evaporated under a

nitrogen stream and used for further treatments and analyses. For plant treatment, aliquots of HPLC

fractions were solubilized in 1% DMSO at 5 mg/mL by sonication. Eight leaves from four plants (two

leaves per plant) were treated with a 2 mL drop of each HPLC fraction from the abaxial side of the

leaf and treated leaves were harvested three days later for analysis. Plants treated with SPE Fr. four

(5mg/mL) served as controls.

Detection of egg lipids on filter paper
Filter paper sheets were clipped on leaves from B. oleracea and placed in a cage with adult P. brassi-

cae butterflies. Sheets containing egg batches were removed and left at room temperature for one

day. Then, eggs were gently removed and the oviposited area was cut and 2–4 filter paper pieces

(equivalent to 80 eggs) were placed into a 1.5 mL glass vial containing 600 mL MeOH. After gentle
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agitation for 10 min, the pieces were removed and the solution was dried with N2 before further

analysis. Filter paper sheets clipped on B. oleraceae leaves but not exposed to butterflies were used

as controls. For S. littoralis, egg batches were obtained on filter paper three days after oviposition.

Pieces of 0.5 cm2 (150–200 eggs) were cut and placed in MeOH.

Nuclear magnetic resonance (NMR) spectroscopy
The samples were dissolved in CD3OD and the NMR experiments were recorded on a Bruker Avance

III HD 600 MHz NMR spectrometer equipped with a QCI 5 mm Cryoprobe and a SampleJet auto-

mated sample changer (Bruker BioSpin, Rheinstetten, Germany). For assignment of 31P signals the

heteronuclear TOCSY pulse sequence of Kellogg, 1992 modified by Balsgart et al., 2016 was

employed with a mixing time of 70 ms. The 2D 1H�31P NMR experiments were recorded using 256

t1 increments each consisting of 32 scans with a repetition delay of 1 s and eight dummy scans. The

quantitative 1D 31P NMR experiments were recorded under inverse gated decoupling to avoid NOE

transfer from 1H to 31P and employed 128 scans and repetition delays of 20 s. Chemical shifts are

reported in parts per million (d) using the residual CD3OD signal (dH 3.31) as internal standard for 1H

and the TIBP (triisobutyl phosphate) signal (dP�0.36) as internal standards for 31P NMR. The PC

quantification was performed either by the ERETIC method (Akoka et al., 1999) using the triphenyl

phosphate solution as external reference (48.5 mM) or by adding TIBP as internal standard (1.5 mM).

All NMR spectra were recorded at 298 K.

MS analysis of lipids in HPLC fractions and on filter paper
Dried fractions were dissolved in chloroform/methanol (1:1 v/v) and diluted into chloroform/metha-

nol (1:2) containing 5 mM ammonium acetate, which were then infused into a Triple Stage Quadru-

pole Vantage (Thermo Scientific) equipped with a Triversa NanoMate (Advion) and analyzed by full

scan in positive and negative modes as well as precursor ion scans for PCs (positive mode, m/z

184.074, collision energy 30). The data were analyzed using Xcalibur (Thermo Scientific). Relatively

little material was detected in the negative ion mode and in the positive mode, the major species

were found in the precursor ion scan for PCs. Possible PC species were identified by their masses,

giving a PC with x number of C and y number of double bonds (eg. m/z 732.4 = PC(32:1)). To iden-

tify fatty acyl chains, LiAc was added to 5 mM and fragmentation of the desired PC species was per-

formed using the compound optimization method for fragmentation (TSQ Tune) (Hsu and Turk,

1999). Loss of specific fatty acids were detected by neutral ion loss analysis.

For samples on filter paper, dried samples were resuspended in 100 microliters of chloroform/

methanol/water (2:7:1, with 5 mM ammonium acetate) and infused into the TSQ triple quadrupole

MS. A full scan was performed in the positive mode to see all positively charged lipids. A calibration

curve was done with 0.05, 0.5 and 5 mg PC(16:1/16:1) spotted on filter paper and extracted like egg

samples.

MS shotgun lipidomic analysis
MS analysis of P. brassicae and S. littoralis EE was performed at Lipotype GmbH (Dresden, Germany)

according to Surma et al., 2015. Lipid profiling was conducted in triplicates for both insect species.

Phospholipase treatment of EE
For phospholipase treatment, 100 mL of EE were mixed with 20 U of Phospholipase D (Sigma-

Aldrich, P8398) (PLD) and 20 U of Phospholipase A2 (Sigma-Aldrich, P6534) (PLA2) and incubated for

1.5 hr at 30˚C followed by incubation at 37˚C for another 1.5 hr. For separate phospholipase treat-

ments, 100 mL of EE were mixed with 20 U PLD or PLA2 and incubated for 1.5 hr at 30˚C for PLD or

1.5 hr at 37˚C for PLA2. Eight leaves from four plants (two leaves per plant) were treated from the

abaxial side of the leaf with a 2 mL drop of the phospholipase-treated EE or an untreated EE which

was incubated in the same way as described above. Treated leaves were harvested three days later

for analysis and untreated plants served as controls.

Efficacy of PC degradation in phospholipase-treated EE was checked by 31P 1D NMR (see

above).
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Phospholipid treatments and wounding
Pure phospholipids for plant treatments were ordered from Avanti Polar Lipids (Alabaster, Alabama,

USA) PC(3:0/3:0), 1,2-dipropionyl-sn-glycero-3-phosphocholine, 850305; PC(16:0/16:0), 1,2-dipalmi-

toyl-sn-glycero-3-phosphocholine, 850355; PC(16:0-18:1), 1-palmitoyl-2-oleoyl-glycero-3-phospho-

choline, 850457; PC(16:1/16:1), 1,2-dipalmitoleoyl-sn-glycero-3-phosphocholine, 850358; PC(18:0-

18:1), 1-stearoyl-2-oleoyl-sn-glycero-3-phosphocholine, 850467; PC(18:1/18:1), 1,2-dioleoyl-sn-glyc-

ero-3-phosphocholine, 850357; PC(18:3/18:3), 1,2-dilinolenoyl-sn-glycero-3-phosphocholine,

850395; PE(18:1/18:1), 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine, 850725; PA(18:1/18:1), 1,2-

dioleoyl-sn-glycero-3-phosphate, 840875; DAG(16:0/18:1), 1-palmitoyl-2-oleoyl-sn-glycerol, 800815;

TAG(18:1/18:1/18:1), 1,2,3-tri-(9Z-octadecenoyl)-glycerol, 870110; LPC(18:1), 1-hydroxy-2-oleoyl-sn-

glycero-3-phosphocholine, 845875; LPE(18:1), 1-oleoyl-2-hydroxy-sn-glycero-3-phosphoethanol-

amine, 846725; PC-Mix purified from chicken egg, 840051; Lyso-PC-Mix purified from chicken egg,

830071; PE-Mix purified from chicken egg, 840021; Lyso-PE-Mix purified from chicken egg, 860081.

PA-Mix purified from chicken egg, 84010; SM-Mix purified from chicken egg, 860061. Phospholipid

stock solutions were made in 100% MeOH analytical grade. For phospholipid application, an appro-

priated amount of the stock solution was transferred in a fresh tube, the MeOH was evaporated

under a nitrogen-flux and the phospholipids were solved in 1% DMSO, 0.5% Glycerol and 0.1%

Tween 20 by sonication. For GUS staining analysis, six leaves of two plants (three leaves per plant)

were treated, for qPCR analysis eight leaves of four plants (two leaves per plant) were treated, and

for DAB and trypan blue staining nine leaves of three plants (three leaves per plant) were treated.

Plants were treated from the abaxial side of the leaf with a 2 mL drop of the phospholipid solution

and harvested after three days. Control plants were treated with 1% DMSO, 0.5% Glycerol and 0.1%

Tween 20. Oleic acid (C18:1) (Sigma-Aldrich, O1008) solution was prepared as described for phos-

pholipids. Choline (Sigma-Aldrich, C7017) and phosphocholine (Sigma-Aldrich, P0378) stock solu-

tions were made in H2O and diluted in the control solution for plant treatments. The concentrations

used for each separated or combined phospholipid or chemical treatment are given in the corre-

sponding figure legends.

For wounding experiment, a one-side corrugated forceps wounded the leaves mostly from the

abaxial site. The size of the corrugated wounding-surface was adjusted to the size of a 2 mL drop of

EE. Samples were harvested after three days.

RNA sequencing experiment
For experiments with natural oviposition, 15 plants were placed in a 60 � 60�60 cm tent containing

approximately 30 P. brassicae butterflies. After 24 hr, four plants containing one egg batch on two

leaves were placed in a growth chamber for four days. Just before hatching, eggs were gently

removed with a forceps. For EE application, 2 � 2 mL of EE were spotted under the surface of each

of two leaves of each treated plant. Four plants were treated with EE for 5 days. Treated or ovipos-

ited leaves were harvested and quickly stored in liquid N2. Untreated plants were used as controls.

Total RNA from three biologically independent experiments was extracted using an RNeasy plant

mini kit (Qiagen). DNase treatment was added to the protocol. For cDNA synthesis, RNA samples

were purified by NaAC 3M and EtOH precipitation. Library were synthetized from 500 ng of purified

total RNA using the TrueSeq stranded mRNA kit (Illumina). RNA and library quality was assessed

with a fragment analyzer from Advanced Analytical. Library were sequenced with the Illumina HiSeq

2500 sequencer at the Genomic Technologies Facility platform of the University of Lausanne (LGTF)

(http://www.unil.ch/gtf/en/home.html). Libraries were multiplexed and sequenced twice aiming to

obtain 35 million reads per sample. Reads were mapped to the Arabidopsis TAIR10 genome release

using STAR (Dobin et al., 2013). Counts were normalized according to the Trimmed Mean of M-val-

ues (TMM) method and per library size. Data were transposed in normalized counts/million reads (in

log2) to be further analyzed using R Bioconductor package LIMMA. Data have been deposited in

the National Center for Biotechnology Information’s Gene Expression Omnibus (GEO) under the

accession number GSE144091.

Gene expression analysis
Total RNA was extracted using the Relia Prep RNA Tissue Mini Prep System (Promega) following the

manufacturer’s instructions. cDNA synthesis was conducted using 1 mg of total RNA for reverse-
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transcription by M-MLV reverse transcriptase (Invitrogen) in a final volume of 25 mL. cDNA was syn-

thesized in triplicates and diluted eightfold with water for subsequent quantitative real-time PCR

(qPCR) analysis. qPCR analysis was performed with gene specific primers for PR1 (At2g14610; FW:

50-GTGGGTTAGCGAGAAGGCTA-30, RV: 50-ACTTTGGCACATCCGAGTCT-30), SAG13 (At2g29350;

FW: 50-GTCGTGCATGTCAATGTTGG-30, RV: 50-CCAAGGACAAACAGAGTTCG-30), and TI

(At1g73260; FW: 50-CCTCGTGGTTGCTGGTCCAAA-30, RV: 50-CCTCTCACATAGTCTTGGACGAAA-

30) in a final volume of 20 mL containing 2 mL of cDNA, 0.2 mM of each primer, 0.03 mM of reference

dye (ROX), and 10 mL of Brilliant III Ultra Fast SYBR Green QPCR Master Mix (Agilent) on a QuantStu-

dio three real-time PCR machine (Applied Biosystems; Thermo Scientific) with the following pro-

gram: 95˚C for 3 min, then 40 cycles of 10 s at 95˚C and 20 s at 60˚C. mRNA levels were normalized

to the house keeping gene SAND (At2g28390; FW: 50-AACTCTATGCAGCATTTGATCCACT-30, RV:

50-TGATTGCATATCTTTATCGCCATC-30).

Histochemical staining
GUS staining and visualization of cell death by trypan blue staining were done as described previ-

ously (Little et al., 2007). Detection of hydrogen peroxide by 3,30-diaminobenzidine (DAB) staining

was conducted as described previously (Daudi and O’Brien, 2012).

Measurement of total SA
Determination of total SA was done using the bacterial biosensor Acinetobacter sp. ADPWH_lux.

(Huang et al., 2005; Huang et al., 2006) according to Defraia et al., 2008 with minor modification.

Briefly, 18 leaves of six plants (three leaves per plant) were exposed to natural oviposition, treated

with 2 mL of EE, PC-Mix, PC(16:1/16:1) or PC(18:3/18:3), or wounded. Untreated plants and plants

treated with the solvent control served as controls. Three days later, six leaf discs of 0.7 cm diameter

from two plants were harvested per sample, combined and the fresh weight was determined. Sam-

ples were ground in liquid nitrogen and extracted in 200 mL of 0.1 M sodium acetate buffer (pH 5.6)

and centrifuged at 4˚C for 15 min at 16’000 g. 50 mLof the extract was incubated with 5 mL b-glucosi-

dase from almonds (Sigma-Aldrich, G0395; 0.5 U/mL in acetate buffer) for SA release from SA-gluco-

side for 90 min at 37˚C. Afterwards, 20 mL of the extract was mixed with 60 mL of Luria Broth

medium and 50 mL of an overnight log phase culture of Acinetobacter sp. ADPWH_lux

(OD600 = 0.4), and incubated for 1 hr at 37˚C. Luminescence was measured with a Hidex microplate

reader using a 485 ± 10 nm filter for 1 s. For absolute SA quantification, a SA standard curve (0–60

ng) in untreated sid2-1 leaf extracts was read in parallel.

Statistical analyses
We assume normal distribution of values for gene expression levels. Because of the large range of

relative expression values all statistical tests on gene expression data were performed on log-trans-

formed data. Determination of statistically significant differences between gene expression samples

was evaluated by analysis of variance (ANOVA) followed by Tukey’s honest significant. Because crite-

ria for homogeneity of variance were not always met (Levene test), statistical differences for pairwise

comparisons were evaluated by a two-sided Welch’s t-test. When values were not normally distrib-

uted (Shapiro-Wilk test), we used the Mann-Whitney U test. All statistical tests were done in R (RStu-

dio version 1.1.442). The choice of statistical test is given in the corresponding figure legend.
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Aktas M, Wessel M, Hacker S, Klüsener S, Gleichenhagen J, Narberhaus F. 2010. Phosphatidylcholine
biosynthesis and its significance in Bacteria interacting with eukaryotic cells. European Journal of Cell Biology
89:888–894. DOI: https://doi.org/10.1016/j.ejcb.2010.06.013, PMID: 20656373

Alborn HT, Turlings TCJ, Jones TH, Stenhagen G, Loughrin JH, Tumlinson JH. 1997. An elicitor of plant volatiles
from beet armyworm oral secretion. Science 276:945–949. DOI: https://doi.org/10.1126/science.276.5314.945

Balsgart NM, Mulbjerg M, Guo Z, Bertelsen K, Vosegaard T. 2016. High throughput identification and
quantification of phospholipids in complex mixtures. Analytical Chemistry 88:2170–2176. DOI: https://doi.org/
10.1021/acs.analchem.5b03798, PMID: 26797086

Bellande K, Bono J-J, Savelli B, Jamet E, Canut H. 2017. Plant lectins and lectin Receptor-Like kinases: how do
they sense the outside? International Journal of Molecular Sciences 18:1164. DOI: https://doi.org/10.3390/
ijms18061164

Blenn B, Bandoly M, Küffner A, Otte T, Geiselhardt S, Fatouros NE, Hilker M. 2012. Insect egg deposition
induces indirect defense and epicuticular wax changes in Arabidopsis thaliana. Journal of Chemical Ecology 38:
882–892. DOI: https://doi.org/10.1007/s10886-012-0132-8, PMID: 22588570

Blomquist GJ, Borgeson CE, Vundla M. 1991. Polyunsaturated fatty acids and eicosanoids in insects. Insect
Biochemistry 21:99–106. DOI: https://doi.org/10.1016/0020-1790(91)90069-Q

Boller T, Felix G. 2009. A renaissance of elicitors: perception of microbe-associated molecular patterns and
danger signals by pattern-recognition receptors. Annual Review of Plant Biology 60:379–406. DOI: https://doi.
org/10.1146/annurev.arplant.57.032905.105346, PMID: 19400727

Bonnet C, Lassueur S, Ponzio C, Gols R, Dicke M, Reymond P. 2017. Combined biotic stresses trigger similar
transcriptomic responses but contrasting resistance against a chewing herbivore in Brassica nigra. BMC Plant
Biology 17:127. DOI: https://doi.org/10.1186/s12870-017-1074-7, PMID: 28716054

Boutrot F, Zipfel C. 2017. Function, discovery, and exploitation of plant pattern recognition receptors for Broad-
Spectrum disease resistance. Annual Review of Phytopathology 55:257–286. DOI: https://doi.org/10.1146/
annurev-phyto-080614-120106, PMID: 28617654

Bridges RG. 1972. Choline metabolism in insects. In: Treherne J. E, Berridge M. J, Wigglesworth V. B (Eds).
Advances in Insect Physiology. Elsevier. p. 51–110. DOI: https://doi.org/10.1016/S0065-2806(08)60275-1

Brodersen P, Petersen M, Pike HM, Olszak B, Skov S, Odum N, Jørgensen LB, Brown RE, Mundy J. 2002.
Knockout of Arabidopsis accelerated-cell-death11 encoding a sphingosine transfer protein causes activation of
programmed cell death and defense. Genes & Development 16:490–502. DOI: https://doi.org/10.1101/gad.
218202, PMID: 11850411

Bruessow F, Gouhier-Darimont C, Buchala A, Metraux JP, Reymond P. 2010. Insect eggs suppress plant defence
against chewing herbivores. The Plant Journal 62:876–885. DOI: https://doi.org/10.1111/j.1365-313X.2010.
04200.x, PMID: 20230509

Bruessow F, Reymond P. 2007. Oviposition-induced changes in Arabidopsis genome expression: anticipating
your enemy? Plant Signaling & Behavior 2:165–167. DOI: https://doi.org/10.4161/psb.2.3.3690, PMID: 1
9704745

Daudi A, O’Brien J. 2012. Detection of hydrogen peroxide by DAB staining in Arabidopsis leaves. Bio-Protocol 2:
18. DOI: https://doi.org/10.21769/BioProtoc.263

Defraia CT, Schmelz EA, Mou Z. 2008. A rapid biosensor-based method for quantification of free and glucose-
conjugated salicylic acid. Plant Methods 4:28. DOI: https://doi.org/10.1186/1746-4811-4-28, PMID: 19117519

Dhar N, Caruana J, Erdem I, Subbarao KV, Klosterman SJ, Raina R. 2020. The Arabidopsis SENESCENCE-
ASSOCIATED GENE 13 Regulates Dark-Induced Senescence and Plays Contrasting Roles in Defense Against
Bacterial and Fungal Pathogens . Molecular Plant-Microbe Interactions 33:754–766. DOI: https://doi.org/10.
1094/MPMI-11-19-0329-R

Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR. 2013. STAR:
ultrafast universal RNA-seq aligner. Bioinformatics 29:15–21. DOI: https://doi.org/10.1093/bioinformatics/
bts635, PMID: 23104886

Doss RP, Oliver JE, Proebsting WM, Potter SW, Kuy S, Clement SL, Williamson RT, Carney JR, DeVilbiss ED.
2000. Bruchins: Insect-derived plant regulators that stimulate neoplasm formation. PNAS 97:6218–6223.
DOI: https://doi.org/10.1073/pnas.110054697

Erb M, Reymond P. 2019. Molecular Interactions Between Plants and Insect Herbivores. Annual Review of Plant
Biology 70:527–557. DOI: https://doi.org/10.1146/annurev-arplant-050718-095910

Fatouros NE, Broekgaarden C, Bukovinszkine’Kiss G, van Loon JJ, Mumm R, Huigens ME, Dicke M, Hilker M.
2008. Male-derived butterfly anti-aphrodisiac mediates induced indirect plant defense. PNAS 105:10033–
10038. DOI: https://doi.org/10.1073/pnas.0707809105, PMID: 18626017

Fatouros NE, Pashalidou FG, Aponte Cordero WV, van Loon JJ, Mumm R, Dicke M, Hilker M, Huigens ME. 2009.
Anti-aphrodisiac compounds of male butterflies increase the risk of egg parasitoid attack by inducing plant
synomone production. Journal of Chemical Ecology 35:1373–1381. DOI: https://doi.org/10.1007/s10886-009-
9714-5, PMID: 19949841

Fatouros NE, Pineda A, Huigens ME, Broekgaarden C, Shimwela MM, Figueroa Candia IA, Verbaarschot P,
Bukovinszky T. 2014. Synergistic effects of direct and indirect defences on herbivore egg survival in a wild

Stahl et al. eLife 2020;9:e60293. DOI: https://doi.org/10.7554/eLife.60293 19 of 21

Research article Plant Biology

https://doi.org/10.1021/ac981422i
http://www.ncbi.nlm.nih.gov/pubmed/21662801
https://doi.org/10.1016/j.ejcb.2010.06.013
http://www.ncbi.nlm.nih.gov/pubmed/20656373
https://doi.org/10.1126/science.276.5314.945
https://doi.org/10.1021/acs.analchem.5b03798
https://doi.org/10.1021/acs.analchem.5b03798
http://www.ncbi.nlm.nih.gov/pubmed/26797086
https://doi.org/10.3390/ijms18061164
https://doi.org/10.3390/ijms18061164
https://doi.org/10.1007/s10886-012-0132-8
http://www.ncbi.nlm.nih.gov/pubmed/22588570
https://doi.org/10.1016/0020-1790(91)90069-Q
https://doi.org/10.1146/annurev.arplant.57.032905.105346
https://doi.org/10.1146/annurev.arplant.57.032905.105346
http://www.ncbi.nlm.nih.gov/pubmed/19400727
https://doi.org/10.1186/s12870-017-1074-7
http://www.ncbi.nlm.nih.gov/pubmed/28716054
https://doi.org/10.1146/annurev-phyto-080614-120106
https://doi.org/10.1146/annurev-phyto-080614-120106
http://www.ncbi.nlm.nih.gov/pubmed/28617654
https://doi.org/10.1016/S0065-2806(08)60275-1
https://doi.org/10.1101/gad.218202
https://doi.org/10.1101/gad.218202
http://www.ncbi.nlm.nih.gov/pubmed/11850411
https://doi.org/10.1111/j.1365-313X.2010.04200.x
https://doi.org/10.1111/j.1365-313X.2010.04200.x
http://www.ncbi.nlm.nih.gov/pubmed/20230509
https://doi.org/10.4161/psb.2.3.3690
http://www.ncbi.nlm.nih.gov/pubmed/19704745
http://www.ncbi.nlm.nih.gov/pubmed/19704745
https://doi.org/10.21769/BioProtoc.263
https://doi.org/10.1186/1746-4811-4-28
http://www.ncbi.nlm.nih.gov/pubmed/19117519
https://doi.org/10.1094/MPMI-11-19-0329-R
https://doi.org/10.1094/MPMI-11-19-0329-R
https://doi.org/10.1093/bioinformatics/bts635
https://doi.org/10.1093/bioinformatics/bts635
http://www.ncbi.nlm.nih.gov/pubmed/23104886
https://doi.org/10.1073/pnas.110054697
https://doi.org/10.1146/annurev-arplant-050718-095910
https://doi.org/10.1073/pnas.0707809105
http://www.ncbi.nlm.nih.gov/pubmed/18626017
https://doi.org/10.1007/s10886-009-9714-5
https://doi.org/10.1007/s10886-009-9714-5
http://www.ncbi.nlm.nih.gov/pubmed/19949841
https://doi.org/10.7554/eLife.60293


crucifer. Proceedings of the Royal Society B: Biological Sciences 281:20141254. DOI: https://doi.org/10.1098/
rspb.2014.1254

Gouhier-Darimont C, Schmiesing A, Bonnet C, Lassueur S, Reymond P. 2013. Signalling of Arabidopsis thaliana
response to pieris brassicae eggs shares similarities with PAMP-triggered immunity. Journal of Experimental
Botany 64:665–674. DOI: https://doi.org/10.1093/jxb/ers362, PMID: 23264520

Gouhier-Darimont C, Stahl E, Glauser G, Reymond P. 2019. The Arabidopsis lectin receptor kinase LecRK-I.8 Is
Involved in Insect Egg Perception. Frontiers in Plant Science 10:623. DOI: https://doi.org/10.3389/fpls.2019.
00623, PMID: 31134123

Griese E, Dicke M, Hilker M, Fatouros NE. 2017. Plant response to butterfly eggs: inducibility, severity and
success of egg-killing leaf necrosis depends on plant genotype and egg clustering. Scientific Reports 7:7316.
DOI: https://doi.org/10.1038/s41598-017-06704-z, PMID: 28779155

Gust AA, Pruitt R, Nürnberger T. 2017. Sensing danger: key to activating plant immunity. Trends in Plant Science
22:779–791. DOI: https://doi.org/10.1016/j.tplants.2017.07.005, PMID: 28779900

Hancock SE, Poad BL, Batarseh A, Abbott SK, Mitchell TW. 2017. Advances and unresolved challenges in the
structural characterization of isomeric lipids. Analytical Biochemistry 524:45–55. DOI: https://doi.org/10.1016/j.
ab.2016.09.014, PMID: 27651163
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furcifera (Horváth) that induce Japonica rice plant varieties (Oryza sativa L.) to produce an ovicidal substance
against S. furcifera eggs. Bioscience, Biotechnology, and Biochemistry 78:937–942. DOI: https://doi.org/10.
1080/09168451.2014.917266, PMID: 25036116

Stahl et al. eLife 2020;9:e60293. DOI: https://doi.org/10.7554/eLife.60293 21 of 21

Research article Plant Biology

https://doi.org/10.1073/pnas.0602328103
https://doi.org/10.1073/pnas.0602328103
http://www.ncbi.nlm.nih.gov/pubmed/16720701
https://doi.org/10.1146/annurev-ento-010715-023851
http://www.ncbi.nlm.nih.gov/pubmed/26651543
https://doi.org/10.1303/aez.31.467
https://doi.org/10.1111/tpj.13773
http://www.ncbi.nlm.nih.gov/pubmed/29160609
https://doi.org/10.1002/ejlt.201500145
https://doi.org/10.1002/ejlt.201500145
http://www.ncbi.nlm.nih.gov/pubmed/26494980
https://doi.org/10.1016/0022-1910(74)90231-5
http://www.ncbi.nlm.nih.gov/pubmed/4853011
http://www.ncbi.nlm.nih.gov/pubmed/4853011
https://doi.org/10.1016/0022-1910(90)90071-M
https://doi.org/10.1146/annurev.phyto.44.070505.143425
http://www.ncbi.nlm.nih.gov/pubmed/16602946
https://doi.org/10.7554/eLife.25474
https://doi.org/10.7554/eLife.25474
http://www.ncbi.nlm.nih.gov/pubmed/28722654
https://doi.org/10.1146/annurev-genet-102209-163500
http://www.ncbi.nlm.nih.gov/pubmed/20649414
https://doi.org/10.1080/09168451.2014.917266
https://doi.org/10.1080/09168451.2014.917266
http://www.ncbi.nlm.nih.gov/pubmed/25036116
https://doi.org/10.7554/eLife.60293

