3,967 research outputs found

    List and Probabilistic Unique Decoding of Folded Subspace Codes

    Full text link
    A new class of folded subspace codes for noncoherent network coding is presented. The codes can correct insertions and deletions beyond the unique decoding radius for any code rate R[0,1]R\in[0,1]. An efficient interpolation-based decoding algorithm for this code construction is given which allows to correct insertions and deletions up to the normalized radius s(1((1/h+h)/(hs+1))R)s(1-((1/h+h)/(h-s+1))R), where hh is the folding parameter and shs\leq h is a decoding parameter. The algorithm serves as a list decoder or as a probabilistic unique decoder that outputs a unique solution with high probability. An upper bound on the average list size of (folded) subspace codes and on the decoding failure probability is derived. A major benefit of the decoding scheme is that it enables probabilistic unique decoding up to the list decoding radius.Comment: 6 pages, 1 figure, accepted for ISIT 201

    Earth study from space

    Get PDF
    The significance that space studies are making to all Earth sciences in the areas of geography, geodesy, cartography, geology, meteorology, oceanology, agronomy, and ecology is discussed. It is predicted that cosmonautics will result in a revolution in science and technology

    Non-three-colorable common graphs exist

    Full text link
    A graph H is called common if the total number of copies of H in every graph and its complement asymptotically minimizes for random graphs. A former conjecture of Burr and Rosta, extending a conjecture of Erdos asserted that every graph is common. Thomason disproved both conjectures by showing that the complete graph of order four is not common. It is now known that in fact the common graphs are very rare. Answering a question of Sidorenko and of Jagger, Stovicek and Thomason from 1996 we show that the 5-wheel is common. This provides the first example of a common graph that is not three-colorable.Comment: 9 page
    corecore